以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρsin(θ+
π
6
)+m=0,曲線C2的參數(shù)方程為
x=-cosα
y=sinα
(0<α<π),若曲線C1與C2有兩個不同的交點,則實數(shù)m的取值范圍是
 
考點:參數(shù)方程化成普通方程,簡單曲線的極坐標方程
專題:坐標系和參數(shù)方程
分析::曲線C1的極坐標方程化為直角坐標方程,把曲線C2的參數(shù)方程化為普通方程,畫出圖象,求出直線與圓相切時的m及其相交于兩點時滿足的條件即可得出.
解答:解:曲線C1的極坐標方程為ρsin(θ+
π
6
)+m=0,展開為ρ(
3
2
sinθ+
1
2
cosθ)+m
=0,即
3
y+x+2m=0

曲線C2的參數(shù)方程為
x=-cosα
y=sinα
(0<α<π),化為x2+y2=1.(0<y≤1).
如圖所示,當直線經(jīng)過點B(1,0)時,代入直線方程可得0+1+2m=0,解得m=-
1
2

當直線與圓相切時,
|2m|
(
3
)2+12
=1
,m<0,解得m=-1.
∵曲線C1與C2有兩個不同的交點,∴-1<m<-
1
2

故答案為:(-1,-
1
2
)
點評:本題考查了極坐標方程化為直角坐標方程、參數(shù)方程化為普通方程、直線與圓相交與相切、點到直線的距離公式,考查了數(shù)形結(jié)合的思想方法,考查了推理能力和計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xoy中,
x=1-3t
y=4-4t
(t為參數(shù)),則直線傾斜角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的參數(shù)方程為
x=
2
2
t
y=1+
2
2
t
(t為參數(shù)),曲線C的極坐標方程為ρ=2cosθ,則曲線C上的點到直線l的距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標系xOy中,以O(shè)為極點,x軸非負半軸為極軸建立極坐標系.已知點P(-1,0),若極坐標方程為ρ=6cosθ-6sinθ+
9
ρ
的曲線與直線
x=-1+4t
y=-3t
(t為參數(shù))相交于A、B兩點,則|PA|•|PB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系中,以O(shè)為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρsin(
π
3
-θ)=
3
2
,曲線C的參數(shù)方程為
x=1+cosα
y=sinα
,(0≤α≤π).
(Ⅰ)寫出直線l的直角坐標方程;
(Ⅱ)求l與C交點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將圓x2+y2=1上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?倍,得曲線C.
(Ⅰ)寫出C的參數(shù)方程;
(Ⅱ)設(shè)直線l:2x+y-2=0與C的交點為P1,P2,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段P1P2的中點且與l垂直的直線的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線C的極坐標方程是ρ=4cosθ.以極點為平面直角坐標系的原點,極值為x軸的正半軸,建立平面直角坐標系,直線l的參數(shù)方程是:
x=m+t
y=t
,(t是參數(shù)).
(Ⅰ)將曲線C的極坐標方程化為直角坐標方程,直線l的參數(shù)方程化為普通方程;
(Ⅱ)若直線l與曲線C相交于A,B兩點,且|AB|=
14
,試求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

長為3的線段兩端點A,B分別在x軸正半軸和y軸的正半軸上滑動,
BP
=2
PA
,點P的軌跡為曲線C.
(Ⅰ)以直線AB的傾斜角α為參數(shù),求曲線C的參數(shù)方程;
(Ⅱ)求點P到點D(0,-2)距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=(x-
1
x
)sinx的圖象是(  )
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊答案