若函數(shù)f(x)=
2
sin(ωx+φ)(ω>0)的圖象的相鄰兩條對稱軸的距離是π,則ω的值為
 
分析:由已知中函數(shù)f(x)=
2
sin(ωx+φ)(ω>0)的圖象的相鄰兩條對稱軸的距離是π,我們可以根據(jù)正弦型函數(shù)的性質(zhì)得到函數(shù)的最小正周期,進而根據(jù)T=
ω
,即可得到答案.
解答:解:∵函數(shù)f(x)=
2
sin(ωx+φ)(ω>0)的圖象的相鄰兩條對稱軸的距離是半個周期
1
2
T=π,
則函數(shù)f(x)=
2
sin(ωx+φ)(ω>0)的周期T=2π
則ω=1
故答案為:1
點評:本題考查的知識點是由y=Asin(ωx+φ)的部分圖象確定其解析式,正弦型函數(shù)周期的確定方法由,代數(shù)法:根據(jù)T=
ω
求出,幾何法:根據(jù)對稱軸及對稱中心間的距離與周期T的關(guān)系求出.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、定義在R上的函數(shù)y=f(x)是增函數(shù),且為奇函數(shù),若實數(shù)s,t滿足不等式f(s2-2s)≥-f(2t-t2),則當(dāng)1≤s≤4時,3t+s的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x)是減函數(shù),且函數(shù)y=f(x-1)的圖象關(guān)于(1,0)成中心對稱,若s,t滿足不等式f(s2-2s)≤-f(2t-t2).則當(dāng)1≤s≤4時,
t
s
的取值范圍是( 。
A、[-
1
2
,1)
B、[-
1
4
,1)
C、[-
1
2
,1]
D、[-
1
4
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

12、定義在R上的函數(shù)y=f(x)是增函數(shù),且函數(shù)y=f(x-3)的圖象關(guān)于(3,0)成中心對稱,若s,t滿足不等式f(s2-2s)≥-f(2t-t2),則當(dāng)1≤s≤4時,3t+s的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x)是減函數(shù),y=f(x-1)的圖象關(guān)于(1,0)成中心對稱,若s,t滿足不等式f(s2-2s)≤-f(2t-t2),則當(dāng)1≤s≤4時,
t
s
的取值范圍是
[-
1
2
,1]
[-
1
2
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x)是減函數(shù),且函數(shù)y=f(x-1)的圖象關(guān)于(1,0)成中心對稱,若實數(shù)s滿足不等式f(s2-2s)+f(2-s)≤0,則s的取值范圍是
(-∞,1]∪[2,+∞)
(-∞,1]∪[2,+∞)

查看答案和解析>>

同步練習(xí)冊答案