4.為得到函數(shù)y=sin2x-cos2x的圖象,可由函數(shù)y=$\sqrt{2}$sin2x的圖象(  )
A.向左平移$\frac{π}{8}$個(gè)單位B.向右平移$\frac{π}{8}$個(gè)單位
C.向左平移$\frac{π}{4}$個(gè)單位D.向右平移$\frac{π}{4}$個(gè)單位

分析 由條件利用兩角差的正弦公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.

解答 解:∵函數(shù)y=sin2x-cos2x=$\sqrt{2}$sin(2x-$\frac{π}{4}$)=$\sqrt{2}$sin[2(x-$\frac{π}{8}$)],
∴把函數(shù)y=$\sqrt{2}$sin2x的圖象向右平移$\frac{π}{8}$個(gè)單位,可得函數(shù)y=sin2x-cos2x的圖象,
故選:B.

點(diǎn)評(píng) 本題主要考查兩角差的正弦公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)$f(x)=sin(\frac{π}{3}x+φ)(|φ|<\frac{π}{2})$的圖象關(guān)于直線x=1對(duì)稱,把f(x)的圖象向右平移3個(gè)單位長(zhǎng)度后,所得圖象對(duì)應(yīng)的函數(shù)解析式為( 。
A.y=sin($\frac{π}{3}$x+$\frac{π}{6}$)B.y=sin($\frac{π}{3}$x-$\frac{π}{6}$)C.y=cos($\frac{π}{3}$x+$\frac{π}{6}$)D.y=sin($\frac{π}{3}$x-$\frac{5π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某市為了了解本市高中學(xué)生的漢字書(shū)寫(xiě)水平,在全市范圍內(nèi)隨機(jī)抽取了近千名學(xué)生參加漢字聽(tīng)寫(xiě)考試,將所得數(shù)據(jù)進(jìn)行分組,分組區(qū)間為:[50,60),[60,70),[70,80),[80,90),[90,100],并繪制出頻率分布直方圖,如圖所示.
(Ⅰ)求頻率分布直方圖中a的值;從該市隨機(jī)選取一名學(xué)生,試估計(jì)這名學(xué)生參加考試的成績(jī)低于90分的概率;
(Ⅱ)設(shè)A,B,C三名學(xué)生的考試成績(jī)?cè)趨^(qū)間[80,90)內(nèi),M,N兩名學(xué)生的考試成績(jī)?cè)趨^(qū)間[60,70)內(nèi),現(xiàn)從這5名學(xué)生中任選兩人參加座談會(huì),求學(xué)生M,N至少有一人被選中的概率;
(Ⅲ)試估計(jì)樣本的中位數(shù)與平均數(shù).
(注:將頻率視為相應(yīng)的概率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知橢圓$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{36}$=1,則此橢圓的長(zhǎng)半軸長(zhǎng)10,離心率為$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知集合M={x|x2-3x-18≤0],N={x|1-a≤x≤2a+1}.
(1)若a=3,求M∩N和∁RN;
(2)若M∩N=N,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知變量x與y負(fù)相關(guān),且由觀測(cè)數(shù)據(jù)計(jì)算得樣本平均數(shù)$\overline x=4,\overline y=6.5$,則由該觀測(cè)數(shù)據(jù)算得的線性回歸方程可能是(  )
A.y=2x-1.5B.y=0.8x+3.3C.y=-2x+14.5D.y=-0.6x+9.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,外接圓半徑為1,且$\frac{tanA}{tanB}$=$\frac{2c-b}$,則△ABC面積的最大值為$\frac{3\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.代數(shù)式$(\sqrt{x}+2){(\frac{1}{{\sqrt{x}}}-1)^5}$的展開(kāi)式中,常數(shù)項(xiàng)是( 。
A.-7B.-3C.3D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.孝漢城鐵于12月1日開(kāi)通,C5302、C5321兩列車乘務(wù)組工作人員為了了解乘坐本次列車的乘客每月需求情況,分別在兩個(gè)車次各隨機(jī)抽取了100名旅客進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果,繪制了乘車次數(shù)的頻率分布直方圖和頻數(shù)分布表.
C5321次乘客月乘坐次數(shù)頻數(shù)分布表
乘車次數(shù)分組頻數(shù)
[0,5)15
[5,10)20
[10,15)25
[15,20)24
[20,25)11
[25,30]5
(1)若將頻率視為概率,月乘車次數(shù)不低于15次的稱之為“老乘客”,試問(wèn):哪一車次的“老乘客”較多,簡(jiǎn)要說(shuō)明理由.
(2)已知在C5321次列車隨機(jī)抽到的50歲以上人員有35名,其中有10名是“老乘客”,由條件完成下面2×2列聯(lián)表,并根據(jù)資料判斷,是否有90%的把握認(rèn)為年齡有乘車次數(shù)有關(guān),說(shuō)明理由.
老乘客新乘客合計(jì)
50歲以上102535          
50歲以下303565
合計(jì)4060100
附:隨機(jī)變量${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d為樣本總量)
P(k2≥k00.250.150.100.050.025
k01.3232.0722.7063.8415.024

查看答案和解析>>

同步練習(xí)冊(cè)答案