分析 根據定義分別求出f(x)=0和g(x)=0,將函數(shù)方程轉化為sin2[x]+sin2{x}-1=0和[x]•{x}=$\frac{x}{3}$+1,分別利用圖象討論兩個函數(shù)零點的個數(shù).
解答 解:由f(x)=sin2[x]+sin2{x}-1=0得sin2{x}=1-sin2[x]=cos2[x].
則{x}=$\frac{π}{2}$+2kπ+[x]或{x}=-$\frac{π}{2}$+2kπ+[x],
即{x}-[x]=$\frac{π}{2}$+2kπ或{x}-[x]=-$\frac{π}{2}$+2kπ.
即x=$\frac{π}{2}$+2kπ或x=-$\frac{π}{2}$+2kπ.
若x=$\frac{π}{2}$+2kπ,∵0≤x≤100,
∴當k=0時,x=$\frac{π}{2}$,由x=$\frac{π}{2}$+2kπ≤100,解得k≤15.68,即k≤15,此時有15個零點,
若x=-$\frac{π}{2}$+2kπ,∵0≤x≤100,
∴當k=0時,x=-$\frac{π}{2}$不成立,由x=-$\frac{π}{2}$+2kπ≤100,解得k≤16.28,此時有15個零點,
綜上f(x)=sin2[x]+sin2{x}-1的零點個數(shù)為15+15=30個.
∵{x}=$\left\{\begin{array}{l}{x,0≤x<1}\\{x-1,1≤x<2}\\{x-2.2≤x<3}\\{…}\\{x-99,99≤x<100}\\{x-100,x=100}\end{array}\right.$,
∴[x]•{x}=$\left\{\begin{array}{l}{0,0≤x<1\\;}\\{x-1,1≤x<1}\\{2(x-2),2≤x<3}\\{…}\\{99(x-99),99≤x<100}\\{100(x-100),x=100}\end{array}\right.$,由g(x)=0得[x]•{x}=$\frac{x}{3}$+1,分別作出函數(shù)h(x)=[x]{x}和y=$\frac{x}{3}$+1的圖象如圖:
由圖象可知當0≤x<1和1≤x<2時,函數(shù)h(x)=[x]{x}和y=$\frac{x}{3}$+1沒有交點,
但2≤x<3時,函數(shù)h(x)=[x]{x}和y=$\frac{x}{3}$+1在每一個區(qū)間上只有一個交點,
∵0≤x<100,
∴g(x)=[x]•{x}-$\frac{x}{3}$-1的零點個數(shù)為100-2-1=97個.
故m=30,n=97.
m+n=127.
故答案為:127.
點評 本題主要考查函數(shù)的新定義題,利用定義作出函數(shù)的圖象,利用數(shù)形結合是解決本題的關鍵,綜合性較強,難度較大.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a≤-1 | B. | a≥-1 | C. | a≥2 | D. | -1<a<2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $y={(\frac{1}{2})^x}$ | B. | $y=\frac{2}{x}$ | C. | y=-2x3 | D. | $y=-\frac{1}{x}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com