【題目】2018年3月5日上午,李克強總理做政府工作報告時表示,將新能源汽車車輛購置稅優(yōu)惠政策再延長三年,自2018年1月1日至2020年12月31日,對購置的新能源汽車免征車輛購置稅.新能源汽車銷售的春天來了!從衡陽地區(qū)某品牌新能源汽車銷售公司了解到,為了幫助品牌迅速占領(lǐng)市場,他們采取了保證公司正常運營的前提下實行薄利多銷的營銷策略(即銷售單價隨日銷量(臺)變化而有所變化),該公司的日盈利(萬元),經(jīng)過一段時間的銷售得到,的一組統(tǒng)計數(shù)據(jù)如下表:
日銷量臺 | 1 | 2 | 3 | 4 | 5 |
日盈利萬元 | 6 | 13 | 17 | 20 | 22 |
將上述數(shù)據(jù)制成散點圖如圖所示:
(1)根據(jù)散點圖判斷與中,哪個模型更適合刻畫,之間的關(guān)系?并從函數(shù)增長趨勢方面給出簡單的理由;
(2)根據(jù)你的判斷及下面的數(shù)據(jù)和公式,求出關(guān)于的回歸方程,并預(yù)測當(dāng)日銷量時,日盈利是多少?
參考公式及數(shù)據(jù):線性回歸方程,其中,;
,,
,.
【答案】(1)更適合刻畫,之間的關(guān)系,理由見解析;(2),24萬元.
【解析】
(1)更適合刻畫,之間的關(guān)系.理由如下:每增加1,函數(shù)值的增加量依次為7,4,3,2,增長速度越來越慢,適合對數(shù)型函數(shù)模型的增長規(guī)律,與直線型函數(shù)的均勻增長有較大的差異;
(2)根據(jù)題目數(shù)據(jù)計算出回歸方程可得.
(1)更適合刻畫,之間的關(guān)系.
理由如下:每增加1,函數(shù)值的增加量依次為7,4,3,2,增長速度越來越慢,適合對數(shù)型函數(shù)模型的增長規(guī)律,與直線型函數(shù)的均勻增長有較大的差異;
(2)令,則,,
,
,
,
,
,
,
所以,所要求的回歸方程為.
當(dāng)日銷量時,日盈利萬元.
所以,當(dāng)日銷量時,預(yù)測日盈利是24萬元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列A: , ,… ().如果對小于()的每個正整數(shù)都有 < ,則稱是數(shù)列A的一個“G時刻”.記“是數(shù)列A的所有“G時刻”組成的集合.
(1)對數(shù)列A:-2,2,-1,1,3,寫出的所有元素;
(2)證明:若數(shù)列A中存在使得>,則 ;
(3)證明:若數(shù)列A滿足- ≤1(n=2,3, …,N),則的元素個數(shù)不小于 -.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論中正確的個數(shù)是( )
①在中,“”是“”的必要不充分條件;
②若,的最小值為2;
③夾在圓柱的兩個平行截面間的幾何體是圓柱;
④數(shù)列的通項公式為,則數(shù)列的前項和.( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a為實數(shù),函數(shù)f(x)=aln x+x2-4x.
(1)是否存在實數(shù)a,使得f(x)在x=1處取得極值?證明你的結(jié)論;
(2)設(shè)g(x)=(a-2)x,若x0∈,使得f(x0)≤g(x0)成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某民航部門統(tǒng)計的2019年春運期間12個城市售出的往返機票的平均價格以及相比上年同期變化幅度的數(shù)據(jù)統(tǒng)計圖表如圖所示,根據(jù)圖表,下面敘述不正確的是( )
A. 同去年相比,深圳的變化幅度最小且廈門的平均價格有所上升
B. 天津的平均價格同去年相比漲幅最大且2019年北京的平均價格最高
C. 2019年平均價格從高到低居于前三位的城市為北京、深圳、廣州
D. 同去年相比,平均價格的漲幅從高到低居于前三位的城市為天津、西安、南京
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,為橢圓的右焦點,,為橢圓的上、下頂點,且的面積為.
(1)求橢圓的方程;
(2)動直線與橢圓交于,兩點,證明:在第一象限內(nèi)存在定點,使得當(dāng)直線與直線的斜率均存在時,其斜率之和是與無關(guān)的常數(shù),并求出所有滿足條件的定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,其中a,.
(1)求的單調(diào)區(qū)間;
(2)若存在極值點,且,其中,求證:;
(3)設(shè),函數(shù),求證:在區(qū)間上的最大值不小于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】線段AB為圓的一條直徑,其端點A,B在拋物線 上,且A,B兩點到拋物線C焦點的距離之和為11.
(1)求拋物線C的方程及直徑AB所在的直線方程;
(2)過M點的直線l交拋物線C于P,Q兩點,拋物線C在P,Q處的切線相交于N點,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖兩個同心球,球心均為點,其中大球與小球的表面積之比為3:1,線段與是夾在兩個球體之間的內(nèi)弦,其中兩點在小球上,兩點在大球上,兩內(nèi)弦均不穿過小球內(nèi)部.當(dāng)四面體的體積達到最大值時,此時異面直線與的夾角為,則( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com