分析 由條件利用同角三角函數(shù)的基本關(guān)系求得sin($\frac{π}{4}$-α)和cos($\frac{π}{4}$+β)的值,再利用兩角差的正弦公式,求得sin(α+β)的值.
解答 解:∵α∈($\frac{π}{4}$,$\frac{3π}{4}$),β∈(0,$\frac{π}{4}$),cos($\frac{π}{4}$-α)=$\frac{3}{5}$,∴sin($\frac{π}{4}$-α)=-$\sqrt{{1-cos}^{2}(\frac{π}{4}-α)}$=-$\frac{4}{5}$.
由$\frac{π}{4}$+β∈($\frac{π}{4}$,$\frac{π}{2}$),sin($\frac{π}{4}$+β)=$\frac{12}{13}$,可得cos($\frac{π}{4}$+β)=$\frac{5}{13}$,
∴sin(α+β)=sin[($\frac{π}{4}$+β)-($\frac{π}{4}$-α)]=sin($\frac{π}{4}$+β)cos($\frac{π}{4}$-α)-cos($\frac{π}{4}$+β)sin($\frac{π}{4}$-α)
=$\frac{12}{13}•\frac{3}{5}$-$\frac{5}{13}•(-\frac{4}{5})$=$\frac{56}{65}$.
點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角差的正弦公式的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2017屆廣西南寧二中等校高三8月聯(lián)考數(shù)學(xué)(文)試卷(解析版) 題型:解答題
選修4-4:坐標(biāo)系與參數(shù)方程
已知直線(為參數(shù)),圓,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立直角坐標(biāo)系.
(1)求圓的極坐標(biāo)方程,直線的極坐標(biāo)方程;
(2)設(shè)與的交點(diǎn)為,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{4}$-$\frac{\sqrt{3}}{4}$i | B. | $\frac{3}{2}$-$\frac{\sqrt{3}}{2}$i | C. | $\frac{3}{4}$+$\frac{\sqrt{3}}{4}$i | D. | $\frac{3}{2}$+$\frac{\sqrt{3}}{2}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2017屆廣西南寧二中等校高三8月聯(lián)考數(shù)學(xué)(文)試卷(解析版) 題型:選擇題
設(shè)集合,,則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com