7.設(shè)函數(shù)$f(x)=\left\{{\begin{array}{l}{{{log}_2}x(x>0)}\\{g(x)(x<0)}\end{array}}\right.$,若f(x)為奇函數(shù),則$g(-\frac{1}{4})$的值為2.

分析 由題意可得g(-$\frac{1}{4}$)=f(-$\frac{1}{4}$)=-f($\frac{1}{4}$)=-${log}_{2}\frac{1}{4}$,再利用對(duì)數(shù)的運(yùn)算性質(zhì),求得結(jié)果.

解答 解:g(-$\frac{1}{4}$)=f(-$\frac{1}{4}$)=-f($\frac{1}{4}$)=-${log}_{2}\frac{1}{4}$=log24=2,
故答案為:2.

點(diǎn)評(píng) 本題主要考查函數(shù)的奇偶性的應(yīng)用,對(duì)數(shù)的運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知cos($\frac{π}{4}$-α)=$\frac{3}{5}$,sin($\frac{π}{4}$+β)=$\frac{12}{13}$,α∈($\frac{π}{4}$,$\frac{3π}{4}$),β∈(0,$\frac{π}{4}$),求sin(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.${A}_{3}^{2}$+${A}_{4}^{2}$+${A}_{5}^{2}$+…+${A}_{10}^{2}$=328.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知A={x|x=n2,n∈Z},映射f:A→A.對(duì)x∈A,給出下列關(guān)系式:
①f(x)=x,②f(x)=x2,③f(x)=x3,④f(x)=x4,⑤f(x)=x2+1.其中正確的關(guān)系式為4.(寫出所有正確關(guān)系式的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知定義在R上的奇函數(shù)f(x),當(dāng)x≤0時(shí),f(x)=$\frac{1}{8}$x2+$\frac{1}{2}$x.
①求x>0時(shí),f(x)的解析式;
②關(guān)于x的方程f(x)=$\frac{1}{2}$a2-1有三個(gè)不同的根,求a的取值范圍;
③是否存在正實(shí)數(shù)a,b(a≠b)當(dāng)x∈[a,b],g(x)=f(x)且g(x)的值域?yàn)閇$\frac{1}$,$\frac{1}{a}$],若存在,求a,b的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.計(jì)算:
(1)$\root{5}{{{{({-5})}^5}}}+\root{4}{{{{({-4})}^4}}}$;
(2)${(2\frac{1}{4})^{\frac{3}{2}}}+{0.2^{-2}}-{π^0}+{(\frac{1}{27})^{-\;\;\frac{1}{3}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知圓C:(x-3)2+(y-5)2=5,過圓心C的直線l交圓C于A,B兩點(diǎn),交y軸于點(diǎn)P.若A恰為PB的中點(diǎn),則直線l的方程為2x-y-1=0或2x+y-11=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)求和:Sn=1$\frac{1}{2}+2\frac{1}{4}+3\frac{1}{8}+…+({n+\frac{1}{2^n}})$.
(2)an=$\frac{1}{{n({n+2})}},n∈{N^+}$,求此數(shù)列的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知$\overrightarrow{a}$=(3,-1),$\overrightarrow$=(1,k),$\overrightarrow{a}$⊥$\overrightarrow$;
(1)求k的取值;
(2)求$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角.

查看答案和解析>>

同步練習(xí)冊(cè)答案