12.若集合A={x|-1<x<2},B={x|(2x+1)(3-x)<0},則A∩B是( 。
A.{x|2<x<3}B.{x|-$\frac{1}{2}$<x<2}C.{x|-1$<x<-\frac{1}{2}$}D.{x|-1$<x<\frac{1}{2}$或2<x<3}

分析 利用一元二次不等式的性質(zhì)先求出集合B,再由交集的定義求解.

解答 解:∵集合A={x|-1<x<2},
B={x|(2x+1)(3-x)<0}={x|x<-$\frac{1}{2}$或x>3},
∴A∩B={x|-1<x<-$\frac{1}{2}$}.
故選:C.

點(diǎn)評(píng) 本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意一元二次不等式的性質(zhì)和交集的定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.點(diǎn)P(-1,0)在動(dòng)直線mx+y+2-m=0(m∈R )上射影為M,則點(diǎn)M到直線x-y=5的距離的最大值是3$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.拋物線y=ax2(a≠0)的準(zhǔn)線方程是( 。
A.$x=\frac{a}{4}$B.$x=-\frac{1}{4a}$C.$y=\frac{a}{4}$D.$y=-\frac{1}{4a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知平面直角坐標(biāo)系xoy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C1方程為ρ=2sinθ;C2的參數(shù)方程為$\left\{\begin{array}{l}x=-1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù)).
(Ⅰ)寫出曲線C1的直角坐標(biāo)方程和C2的普通方程;
(Ⅱ)設(shè)點(diǎn)P為曲線C1上的任意一點(diǎn),求點(diǎn)P 到曲線C2距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1,求過橢圓內(nèi)點(diǎn)P(4,2)且被P平分的弦所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=lnx+(x-b)2(b∈R)在區(qū)間$[{\frac{1}{2},2}]$上存在單調(diào)遞增區(qū)間,則實(shí)數(shù)b的取值范圍是(  )
A.$({-∞,\frac{3}{2}})$B.$({-∞,\frac{9}{4}})$C.(-∞,3)D.$({-∞,\sqrt{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)實(shí)數(shù)a,b滿足a2+b2=1,則乘積ab的最大值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某城市自來水廠向全市供應(yīng)生產(chǎn)與生活用水,蓄水池現(xiàn)有水9千噸,水廠每小時(shí)向池中注入2千噸水,同時(shí)向全市供水,x小時(shí)內(nèi)供水總量為8$\sqrt{x}$,問:
(1)多少小時(shí)時(shí)池內(nèi)水量最少?
(2)當(dāng)蓄水池水量少于3千噸時(shí),供水就會(huì)出現(xiàn)緊張現(xiàn)象,那么出現(xiàn)這種緊張情況有多長(zhǎng)時(shí)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.下列說法中不正確的是③④⑤(只需填寫序號(hào))
①設(shè)集合A=φ,則φ⊆A;
②若集合A={x|x2-1=0},B={-1,1},則A=B;
③在集合A到B的映射中,對(duì)于集合B中的任何一個(gè)元素y,在集合A中都有唯一的一個(gè)元素x與之對(duì)應(yīng);
④函數(shù)f(x)=$\frac{1}{x}$的單調(diào)減區(qū)間是(-∞,0)∪(0,+∞);
⑤設(shè)集合A={x|1<x<2},B={x|x<a},若A⊆B,則a>2.

查看答案和解析>>

同步練習(xí)冊(cè)答案