在△ABC中,若cosA=
sinB
sinC
,試判斷該三角形的形狀.
考點(diǎn):余弦定理,正弦定理
專題:三角函數(shù)的求值
分析:已知等式左邊利用余弦定理化簡,右邊利用正弦定理化簡,整理后利用勾股定理的逆定理判斷即可得到結(jié)果.
解答: 解:已知等式變形得:
b2+c2-a2
2bc
=
b
c
,
去分母得:b2+c2-a2=2b2,即a2+b2=c2,
則△ABC為直角三角形.
點(diǎn)評(píng):此題考查了正弦、余弦定理,以及勾股定理的逆定理,熟練掌握定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
mx2-2mx+m+2
的定義域?yàn)镽,則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos2x
1+sin2x
=
1
5
,則tanx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=f(
1
x
)log3x+1,則f(3)的值為( 。
A、1
B、-1
C、10
D、
1
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:4 1-log43

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求過兩點(diǎn)M(3,2)和N(-1,4)的直線l的斜率及求傾斜角,并寫出它的一個(gè)方向向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax+1
x+2
,a∈Z,是否存在整數(shù)a,使函數(shù)f(x)在x∈[-1,+∞)上遞減,并且f(x)不恒為負(fù)?若存在,找出一個(gè)滿足條件的a,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan2a=2tan2b+1,求證:sin2b=2sin2a-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知任意角θ以坐標(biāo)原點(diǎn)O為頂點(diǎn),以x軸的正半軸為始邊,若終邊經(jīng)過P(x0,y0)且|OP|=r(r>0),定義:sosθ=
y0+x0
r
,稱“sosθ”為“正余弦函數(shù)”,對(duì)于“正余弦函數(shù)”y=sosx,有同學(xué)得到以下性質(zhì):
①該函數(shù)的值域?yàn)閇-
2
,
2
];
②該函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱;
③該函數(shù)的圖象關(guān)于直線x=
4
對(duì)稱;
④該函數(shù)為周期函數(shù),且最小正周期為2π;
⑤該函數(shù)的單調(diào)遞增區(qū)間為[2kπ-
4
,2kπ+
π
4
],k∈Z
其中上述性質(zhì)正確的是
 
(填上所有正確性質(zhì)的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案