已知tan2a=2tan2b+1,求證:sin2b=2sin2a-1.
考點:同角三角函數(shù)基本關(guān)系的運用
專題:三角函數(shù)的求值
分析:已知等式兩邊利用同角三角函數(shù)間的基本關(guān)系化簡,整理即可得證.
解答: 證明:已知等式變形得:
sin2a
cos2a
=
2sin2b
cos2b
+1,
sin2a
1-sin2a
=
2sin2b
1-sin2b
+1=
1+sin2b
1-sin2b
,
則sin2b=2sin2a-1.
點評:此題考查了同角三角函數(shù)基本關(guān)系的運用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列命題正確的是
 

①點(
π
8
,0)
為函數(shù)f(x)=tan(2x+
π
4
)
的一個對稱中心;
②要得到函數(shù)y=sin(-2x+
π
3
)的圖象,只要函數(shù)y=sin(-2x)向右平移
π
6
個單位;
③若f(x)=cosxsinx(x∈R),則f(x)的最小正周期是2π;
④“sinα=sinβ”的充要條件是“α+β=(2k+1)π或α-β=2kπ(k∈Z)”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若cosA=
sinB
sinC
,試判斷該三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
3
2
sin2x-
1+cox2x
2
-
1
2

(1)若x屬于[
π
4
,
π
2
],求f(x)的最值及對應(yīng)的x值;
(2)若不等式[f(x)-m]2<1在x∈[
π
4
,
π
2
]
上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在銳角△ABC中,已知cos2A+cos2B+cos2C=sin2B,求證:tanA,tanB,tanC成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在山頂鐵塔上B處測得地面上一點A的俯角為α,在塔底C處測得A處的俯角為β,已知鐵塔BC部分的高為m,試求山高CD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinθ+cosθ=
1
5
,求sin2θ-cos2θ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=|x-4|+|x-1|.
(1)求f(x)的最小值;
(2)若f(x)≤5,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)若cosα<0,則∠α的終邊在
 
象限;
(2)若tanα>0,則∠α的終邊在
 
象限;
(3)若cosα<0,sinα>0,則∠α的終邊在
 
象限;
(4)若sinα=
1
3
,則∠α的終邊在
 
象限;
(5)若cosαsinα<0,則∠α的終邊在
 
象限.

查看答案和解析>>

同步練習冊答案