3.在區(qū)間[0,1]上隨機(jī)地取兩個(gè)數(shù)x,y組成點(diǎn)P(x,y),求滿足x2+y2≤1的事件概率.

分析 該題涉及兩個(gè)變量,故是與面積有關(guān)的幾何概型,分別表示出滿足條件的面積和整個(gè)區(qū)域的面積,最后利用概率公式解之即可.

解答 解:由題意可得$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$的區(qū)域?yàn)檫呴L(zhǎng)為1的正方形,面積為1,
∵x2+y2≤1的區(qū)域是圓的內(nèi)部的陰影區(qū)域,其面積S=$\frac{1}{4}$π,
∴在區(qū)間[0,1]上隨機(jī)地取兩個(gè)數(shù)x,y組成點(diǎn)P(x,y),求滿足x2+y2≤1的事件概率為$\frac{π}{4}$

點(diǎn)評(píng) 本題主要考查了與面積有關(guān)的幾何概率的求解,解題的關(guān)鍵是準(zhǔn)確求出區(qū)域的面積,屬于中檔題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知f(x)=|lnx|,設(shè)0<a<b,且f(a)=f(b),則a+2b的取值范圍是(  )
A.[3,+∞)B.(3,+∞)C.$[2\sqrt{2},+∞)$D.$(2\sqrt{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.①命題“若b2-4ac<0,則方程ax2+bx+c=0(a≠0)無(wú)實(shí)根”的否命題為真命題;
②命題“?x∈N,x3>x2”的否定是“?x0∈N,使x${\;}_{0}^{3}$>x${\;}_{0}^{2}$”;
③“b=0”是“函數(shù)f(x)=ax2+bx+c為偶函數(shù)”的充要條件;
④“正四棱錐的底面是正方形”的逆命題為真命題;
⑤a>1是(a-2)(a-1)>0的必要不充分條件.
其中正確命題的序號(hào)是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.x2+(y+2)2=3的圓心坐標(biāo)、半徑分別為( 。
A.(0,2);3B.(0,-2);3C.$({0,2});\sqrt{3}$D.$({0,-2});\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.圓A:x2+y2+4x+2y+1=0與圓B:x2+y2-2x-6y+1=0的位置關(guān)系是外切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)-$\sqrt{2}$≤a≤$\sqrt{2}$,b≠0,a,b∈R,則(a-b)2+($\sqrt{2-{a}^{2}}$-$\frac{9}$)2的最小值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.函數(shù)$f(x)=Asin(ωx+φ)\;(A>0,ω>0,|φ|<\frac{π}{2})$部分圖象如圖所示.
(Ⅰ)求f(x)的最小正周期及解析式;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅲ)設(shè)g(x)=f(x)-2cos2x,求函數(shù)g(x)在區(qū)間$[0,\frac{π}{2}]$上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.計(jì)算題
(1)求值:${27^{\frac{2}{3}}}-{({\root{3}{-125}})^2}-{2^{{{log}_2}3}}×{log_2}\frac{1}{8}+{log_2}3×{log_3}4$
(2)求不等式的解集:①33-x<2;②${log_5}({x-1})<\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知$\frac{π}{2}$<β<α<$\frac{3π}{4}$,cos(α-β)=$\frac{12}{13}$,sin(α+β)=-$\frac{3}{5}$,求sin2β的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案