【題目】由于疫情影響,今年我們學校開展線上教學,高一年級某班班主任為了了解學生上網(wǎng)學習時間,對本班40名學生某天上網(wǎng)學習時間進行了調(diào)查,將數(shù)據(jù)(取整數(shù))整理后,繪制出如圖所示頻率分布直方圖,已知從左到右各個小組的頻率分別是0.150.25,0.35,0.20,0.05,則根據(jù)直方圖所提供的信息.

1)這一天上網(wǎng)學習時間在分鐘之間的學生有多少人?

2)這40位同學的線上平均學習時間是多少?

3)如果只用這40名學生這一天上網(wǎng)學習時間作為樣本去推斷該校高一年級全體學生該天的上網(wǎng)學習時間,這樣推斷是否合理?為什么?

【答案】114人(2104.9分鐘(3)這樣推斷不合理.見解析

【解析】

1)根據(jù)頻數(shù)樣本容量頻率計算即可;

2)根據(jù)每組的中值與頻率積的和即可估計總體的平均值;

3)根據(jù)樣本的構(gòu)成來分析,不夠全面,所以推斷不合理.

1)因為頻數(shù)樣本容量頻率,一天上網(wǎng)學習時間在分鐘之間的學生所占頻率為0.35,

所以一天上網(wǎng)學習時間在分鐘之間的學生人數(shù)為(人)

240位同學的線上學習時間為:

分鐘

3)因為該樣本的選取只在高一某班,不具有代表性,所以這樣推斷不合理.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,橢圓的方程為(為參數(shù));以原點為極點,以軸正半軸為極軸建立極坐標系,圓的極坐標方程為

(1)求橢圓的極坐標方程,及圓的直角坐標方程;

(2)若動點在橢圓上,動點在圓上,求的最大值;

(3)若射線分別與橢圓交于點,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的極坐標方程為,直線,直線.以極點為原點,極軸為軸的正半軸建立平面直角坐標系.

(1)求直線的直角坐標方程以及曲線的參數(shù)方程;

(2)已知直線與曲線交于兩點,直線與曲線交于兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)z1是虛數(shù),z2z1是實數(shù),且﹣1≤z2≤1

1)求|z1|的值以及z1的實部的取值范圍;

2)若ω,求證ω為純虛數(shù);

3)求z2ω2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若恒成立,試確定實數(shù)的取值范圍;

(3)證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司近年來特別注重創(chuàng)新產(chǎn)品的研發(fā),為了研究年研發(fā)經(jīng)費(單位:萬元)對年創(chuàng)新產(chǎn)品銷售額(單位:十萬元)的影響,對近10年的研發(fā)經(jīng)費與年創(chuàng)新產(chǎn)品銷售額(其中)的數(shù)據(jù)作了初步處理,得到如圖的散點圖及一些統(tǒng)計量的值.

其中,,,

.現(xiàn)擬定關(guān)于的回歸方程為.

1)求的值(結(jié)果精確到);

2)根據(jù)擬定的回歸方程,預(yù)測當研發(fā)經(jīng)費為萬元時,年創(chuàng)新產(chǎn)品銷售額是多少?

參考公式:

求線性回歸方程系數(shù)公式 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為2的正方形,平面 為等腰直角三角形,,的中點,的中點.

(1)求異面直線所成角的余弦值;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知, 是橢圓的左右焦點, 為橢圓的上頂點,點在橢圓上,直線軸的交點為, 為坐標原點,且,

(1)求橢圓的方程;

(2)過點作兩條互相垂直的直線分別與橢圓交于, 兩點(異于點),證明:直線過定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

(1)解關(guān)于的不等式;

(2)若不等式的解集為,求實數(shù)的值.

查看答案和解析>>

同步練習冊答案