已知函數(shù)f(x)=-x3+ax2-x-1在R上不單調(diào),則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:求出函數(shù)的導(dǎo)數(shù),由題意得函數(shù)的導(dǎo)數(shù)在R上至少有一個(gè)零點(diǎn),主要不能有兩個(gè)相等的零點(diǎn),即可求出實(shí)數(shù)a的取值范圍.
解答: 解:∵f(x)=-x3+ax2-x-1,
∴f′(x)=-3x2+2ax-1,
∵若函數(shù)f(x)=-x3+ax2-x-1在R上不是單調(diào)函數(shù)
∴f′(x)=-3x2+2ax-1=0有兩個(gè)不等的根,
即△=4a2-12>0,
解得a<-
3
,或a>
3

故答案為:{a|a<-
3
,或a>
3
}.
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)研究三次多項(xiàng)式函數(shù)的單調(diào)性,從而求參數(shù)a的取值范圍,屬于中檔題,解題時(shí)應(yīng)該注意導(dǎo)函數(shù)等于0的等根的情形,以免出現(xiàn)只一個(gè)零點(diǎn)的誤解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cosx(sinx-
3
cosx)(x∈R)
(Ⅰ)求函數(shù)f(x)的最大值以及取最大值時(shí)x的取值集合;
(Ⅱ)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,角A滿足f(
A
2
)=-
3
2
,a=3,b+c=2
3
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)A(2,3),B(-2,5),則|AB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,C=60°,AB=
3
,AB邊上的高為
1
2
,則AC+BC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)幾何體的三視圖如圖所示(單位長(zhǎng)度:cm),則此幾何體的表面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩個(gè)單位向量
a
,
b
的夾角為120°,向量t
a
+(1-t)
b
a
垂直,則t=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱錐A-BCD的表面積為S,其內(nèi)有半徑為r的內(nèi)接球O(球O與三棱錐A-BCD的每個(gè)面相切,即球心O到A-BCD每個(gè)面的距離為r),則三棱錐A-BCD的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(ωx+φ),g(x)=2cos(ωx+φ)若對(duì)任意的x∈R都有f(
π
3
+x)=f(
π
3
-x),則g(
π
3
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0),P(x,y),Q(x′,y′)是橢圓上兩點(diǎn),有下列三個(gè)不等式①a2+b2≥(x+y)2;②
1
x2
+
1
y2
≥(
1
a
+
1
b
2
xx′
a2
+
yy′
b2
≤1.其中不等式恒成立的序號(hào)是
 
.(填所有正確命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案