直線被圓x2+y2-4y=0所截得的弦長為   
【答案】分析:由已知中直線與圓的方程,我們可以求出直線的一般方程,圓的圓心坐標及半徑,根據(jù)半弦長,弦心距,半徑構(gòu)成直角三角形,滿足勾股定理,我們即可求出答案.
解答:解:由圓的方程x2+y2-4y=0可得,圓心坐標為(0,2),半徑R=2
圓心到直線的距離d=1
由半弦長,弦心距,半徑構(gòu)成直角三角形,滿足勾股定理可得:
l=2=2
故答案為:2
點評:本題考查的知識點是直線和圓的方程的應(yīng)用,其中直線與圓相交的弦長問題常根據(jù)半弦長,弦心距,半徑構(gòu)成直角三角形,滿足勾股定理,即l=2進行解答.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)過原點且傾斜角為60°的直線被圓x2+y2-4y=0所截得的弦長為(  )
A、
3
B、2
C、
6
D、2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過原點且傾斜角為60°的直線被圓x2+y2-4y=0所截得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過原點且傾斜角為30°的直線被圓x2+y2-4x=0所截得的弦長為( 。
A、
3
B、2
C、
6
D、2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點(4,0),且傾斜角為150°的直線被圓x2+y2-4x=0截得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過原點且傾斜角為150°的直線被圓x2+y2-4y=0所截得的弦長為
2
2

查看答案和解析>>

同步練習冊答案