【題目】已知函數(shù) f(x)=1+x﹣ ,g (x)=1﹣x+ ,設(shè)函數(shù)F(x)=f(x﹣4)g(x+3),且函數(shù) F ( x) 的零點(diǎn)均在區(qū)間[a,b]( a<b,a,b∈Z )內(nèi),則 b﹣a 的最小值為

【答案】6
【解析】解:∵函數(shù) f(x)=1+x﹣ ,f′(x)=1﹣x+x2>0,∴f(x)在R單調(diào)遞增,而f(0)=1>0,f(﹣1)=1﹣1﹣ <0, ∴函數(shù)f(x)在區(qū)間(﹣1,0)內(nèi)有零點(diǎn),∴函數(shù)f(x﹣4)在[3,4]上有一個(gè)零點(diǎn),
函數(shù)g (x)=1﹣x+ ,g′(x)=﹣1+x﹣x2<0,∴f(x)在R單調(diào)遞減,而g(1)=1﹣1+ >0,g(2)=1﹣2+2- <0,
∴函數(shù)g(x)在區(qū)間(1,2)內(nèi)有零點(diǎn),∴函數(shù)g(x+3)在[﹣2,﹣1]上有一個(gè)零點(diǎn),
函數(shù)F(x)=f(x﹣4)g(x+3),且函數(shù) F ( x) 的零點(diǎn)在區(qū)間[﹣2,4]內(nèi),
則 b﹣a 的最小值為:6.
所以答案是:6.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足f(x+2)= f(x),當(dāng)x∈[0,2]時(shí),f(x)= ,函數(shù)g(x)=x3+3x2+m.若對(duì)任意s∈[﹣4,﹣2),存在t∈[﹣4,﹣2),不等式f(s)﹣g(t)≥0成立,則實(shí)數(shù)m的取值范圍是(
A.(﹣∞,﹣12]
B.(﹣∞,14]
C.(﹣∞,﹣8]
D.(﹣∞, ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù) 的圖象上每點(diǎn)的橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變),得到函數(shù)y=f(x)的圖象.
(1)求函數(shù)f(x)的解析式及其圖象的對(duì)稱軸方程;
(2)在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c.若 ,求sinB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時(shí),多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出n的值為( ) (參考數(shù)據(jù): ≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)

A.12
B.24
C.36
D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知左、右焦點(diǎn)分別為F1(﹣c,0),F(xiàn)2(c,0)的橢圓 過點(diǎn) ,且橢圓C關(guān)于直線x=c對(duì)稱的圖形過坐標(biāo)原點(diǎn).
(I)求橢圓C的離心率和標(biāo)準(zhǔn)方程.
(II)圓 與橢圓C交于A,B兩點(diǎn),R為線段AB上任一點(diǎn),直線F1R交橢圓C于P,Q兩點(diǎn),若AB為圓P1的直徑,且直線F1R的斜率大于1,求|PF1||QF1|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= x2+ax,g(x)=ex , a∈R且a≠0,e=2.718…,e為自然對(duì)數(shù)的底數(shù).
(Ⅰ)求函數(shù)h(x)=f(x)g(x)在[﹣1,1]上極值點(diǎn)的個(gè)數(shù);
(Ⅱ)令函數(shù)p(x)=f'(x)g(x),若a∈[1,3],函數(shù)p(x)在區(qū)間[b+a﹣ea , +∞]上均為增函數(shù),求證:b≥e3﹣7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(2 cosx,cosx), =(sinx,2cosx)(x∈R),設(shè)函數(shù)f(x)= ﹣1. (Ⅰ)求函數(shù)f(x)的單調(diào)減區(qū)間;
(Ⅱ)已知銳角△ABC的三個(gè)內(nèi)角分別為A,B,C,若f(A)=2,B= ,邊AB=3,求邊BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】程序框圖如圖所示,則該程序運(yùn)行后輸出n的值是(
A.4
B.2
C.1
D.2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)D是函數(shù)y=f(x)定義域內(nèi)的一個(gè)區(qū)間,若存在x0∈D,使f(x0)=﹣x0 , 則稱x0是f(x)的一個(gè)“次不動(dòng)點(diǎn)”,也稱f(x)在區(qū)間D上存在次不動(dòng)點(diǎn).若函數(shù)f(x)=ax2﹣3x﹣a+ 在區(qū)間[1,4]上存在次不動(dòng)點(diǎn),則實(shí)數(shù)a的取值范圍是(
A.(﹣∞,0)
B.(0,
C.[ ,+∞)
D.(﹣∞, ]

查看答案和解析>>

同步練習(xí)冊(cè)答案