函數(shù)y=f(x)為定義在R上的增函數(shù),對(duì)任意的x∈R都有f(x)+f(-x)=0,設(shè)z=x+2y,x,y滿足不等式f(x2-2x)+f(2y-y2)≥0,則當(dāng)1≤x≤4時(shí),z的取值范圍是
 
考點(diǎn):抽象函數(shù)及其應(yīng)用,函數(shù)單調(diào)性的性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:首先根據(jù)條件對(duì)任意的x∈R都有f(x)+f(-x)=0,以及f(x)為定義在R上的增函數(shù),將f(x2-2x)+f(2y-y2)≥0化為x2-2x≥y2-2y,在同一直角坐標(biāo)系中,作出1≤x≤4,且(x-y)(x+y-2)≥0的可行域,畫出目標(biāo)函數(shù)z=x+2y=0的圖象,將其平移觀察即可得到z=x+2y的最值.
解答: 解:∵對(duì)任意的x∈R都有f(x)+f(-x)=0,
∴-f(x)=f(-x),
∵f(x2-2x)+f(2y-y2)≥0,即f(x2-2x)≥-f(2y-y2),
∴f(x2-2x)≥f(-2y+y2),
∵函數(shù)y=f(x)為定義在R上的增函數(shù),
∴x2-2x≥y2-2y,即(x-y)(x+y-2)≥0,
在同一直角坐標(biāo)系中,作出1≤x≤4,且(x-y)(x+y-2)≥0的可行域,
畫出目標(biāo)函數(shù)z=x+2y=0的圖象,將其平移觀察,
經(jīng)過(guò)點(diǎn)A(4,-2),z取最小值0;
經(jīng)過(guò)點(diǎn)B(4,4),z取最大值12.
∴當(dāng)1≤x≤4時(shí),z的取值范圍是[0,12].
故答案為:[0,12].
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性及運(yùn)用,同時(shí)考查運(yùn)用線性規(guī)劃求目標(biāo)函數(shù)的最值的方法,注意正確畫圖作出可行域,再平移,考查轉(zhuǎn)化的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知cos2C=-
1
9
,C為銳角.
(Ⅰ)求sinC的值;
(Ⅱ)若a=2,△ABC的面積為
5
,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖后,若輸出的結(jié)果滿足y>1,則輸入的x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某大學(xué)的8名同學(xué)準(zhǔn)備拼車去旅游,其中大一、大二、大三、大四每個(gè)年級(jí)各兩名,分乘甲、乙兩輛汽車.每車限坐4名同學(xué)(乘同一輛車的4名同學(xué)不考慮位置),其中大一的孿生姐妹需乘同一輛車,則乘坐甲車的4名同學(xué)中恰有2名同學(xué)是來(lái)自于同一年級(jí)的乘坐方式共有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將5封信投入3個(gè)郵筒,不同的投法共有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面四個(gè)命題中真命題的是( 。
①?gòu)膭蛩賯鬟f的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每15分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的
抽樣是分層抽樣;
②兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1;
③在回歸直線方程
y
=0.4x+12中,當(dāng)解釋變量x每增加一個(gè)單位時(shí),預(yù)報(bào)變量平均增加0.4個(gè)單位;
④對(duì)分類變量X與Y的隨機(jī)變量K2的觀測(cè)值k來(lái)說(shuō),k越小,“X與Y有關(guān)系”的把握程度越大.
A、①④B、②④C、①③D、②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=alnx+blgx+1,則f(1)+f(2)+…+f(2014)+f(
1
2
)+f(
1
3
)+…+f(
1
2014
)=( 。
A、4028B、4027
C、2014D、2013

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a2+a4+a9=24,則S9=( 。
A、36B、72C、144D、70

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)B(0,
3
)為短軸的一個(gè)端點(diǎn),∠OF2B=60°.
(Ⅰ)求橢圓C的方程;
(Ⅱ)如圖,過(guò)右焦點(diǎn)F2,且斜率為k(k≠0)的直線l與橢圓C相交于E、F兩點(diǎn),A為橢圓的右頂點(diǎn),直線AE、AF分別交直線x=3于點(diǎn)M、N,線段MN的中點(diǎn)為P,記直線PF2的斜率為k′.求證:k•k′為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案