下面四個(gè)命題中真命題的是( 。
①從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每15分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測,這樣的
抽樣是分層抽樣;
②兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值越接近于1;
③在回歸直線方程
y
=0.4x+12中,當(dāng)解釋變量x每增加一個(gè)單位時(shí),預(yù)報(bào)變量平均增加0.4個(gè)單位;
④對分類變量X與Y的隨機(jī)變量K2的觀測值k來說,k越小,“X與Y有關(guān)系”的把握程度越大.
A、①④B、②④C、①③D、②③
考點(diǎn):命題的真假判斷與應(yīng)用
專題:簡易邏輯
分析:根據(jù)抽樣方式的特征,可判斷①;根據(jù)相關(guān)系數(shù)的性質(zhì),可判斷②;根據(jù)回歸系數(shù)的幾何意義,可判斷③;根據(jù)獨(dú)立性檢驗(yàn)的方法和步驟,可判斷④.
解答: 解:根據(jù)抽樣是間隔相同,且樣本間無明顯差異,故①應(yīng)是系統(tǒng)抽樣,即①為假命題;
兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值越接近于1;兩個(gè)隨機(jī)變量相關(guān)性越弱,則相關(guān)系數(shù)的絕對值越接近于0;故②為真命題;
在回歸直線方程
y
=0.4x+12中,當(dāng)解釋變量x每增加一個(gè)單位時(shí),預(yù)報(bào)變量平均增加0.4個(gè)單位,故③為真命題;
對分類變量X與Y的隨機(jī)變量K2的觀測值k來說,k越小,“X與Y有關(guān)系”的把握程度越小,故④為假命題;
故真命題為:②③,
故選D.
點(diǎn)評(píng):本題以命題的真假判斷為載體考查了抽樣方法,相關(guān)系數(shù),回歸系數(shù)及獨(dú)立性檢驗(yàn)等知識(shí)點(diǎn),難度不大,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)正三棱錐的側(cè)面都是等腰直角三角形,側(cè)棱長為a,求內(nèi)切球的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的流程圖,輸出y的值為3,則輸入x的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校高三年級(jí)共400名學(xué)生,現(xiàn)用分層抽樣的方法隨機(jī)抽取32人進(jìn)行健康調(diào)查.若男生抽取了12人,則高三年級(jí)共有女生
 
人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)為定義在R上的增函數(shù),對任意的x∈R都有f(x)+f(-x)=0,設(shè)z=x+2y,x,y滿足不等式f(x2-2x)+f(2y-y2)≥0,則當(dāng)1≤x≤4時(shí),z的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓P:x2+y2=4y及拋物線S:x2=8y,過圓心P作直線l,此直線與上述兩曲線的四個(gè)交點(diǎn),自左向右順次記為A,B,C,D,如果線段AB,BC,CD的長按此順序構(gòu)成一個(gè)等差數(shù)列,則直線l的斜率為( 。
A、±
2
2
B、
2
2
C、±
2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A,B,C,D是平面直角坐標(biāo)系中不同的四點(diǎn),若
AC
AB
(λ∈R),
AD
AB
(μ∈R)且
1
λ
+
1
μ
=2,則稱C,D是關(guān)于A,B的“好點(diǎn)對”.已知M,N是關(guān)于A,B的“好點(diǎn)對”,則下面說法正確的是(  )
A、M可能是線段AB的中點(diǎn)
B、M,N可能同時(shí)在線段BA延長線上
C、M,N可能同時(shí)在線段AB上
D、M,N不可能同時(shí)在線段AB的延長線上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

任取m∈(-1,3),則直線(m+1)x+(4-m)y-1=0與x軸、y軸圍成的三角形的面積小于
1
8
的概率是( 。
A、
3
5
B、
3
4
C、
1
2
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-blnx在點(diǎn)(1,f(1))處的切線為y=1.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)是否存在實(shí)數(shù)m,當(dāng)x∈(0,1]時(shí),函數(shù)g(x)=f(x)-x2+m(x-1)的最小值為0,若存在,求出m的取值范圍;若不存在,說明理由;
(Ⅲ)若0<x1<x2,求證:
x2-x1
lnx2-lnx1
<2x2

查看答案和解析>>

同步練習(xí)冊答案