分析 (1)將直線l中的x與y代入到直線C1中,即可得到交點坐標,然后利用兩點間的距離公式即可求出|AB|.
(2)將直線的參數(shù)方程化為普通方程,曲線C2任意點P的坐標,利用點到直線的距離公式P到直線的距離d,分子合并后利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化為一個角的正弦函數(shù),與分母約分化簡后,根據(jù)正弦函數(shù)的值域可得正弦函數(shù)的最小值,進而得到距離d的最小值即可.
解答 解:(1)l的普通方程為y=$\sqrt{3}$(x-2),C1的普通方程為x2+y2=4,
聯(lián)立方程組,解得交點坐標為A(1,-$\sqrt{3}$),B(2,0)
所以|AB|=$\sqrt{1+3}$=2;
(II)曲線C2:$\left\{\begin{array}{l}{x=cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ為參數(shù)).
設所求的點為P(cosθ,$\sqrt{3}$sinθ),
則P到直線l的距離d=$\frac{|\sqrt{3}cosθ-\sqrt{3}sinθ-2\sqrt{3}|}{\sqrt{3+1}}$=$\frac{\sqrt{3}}{2}$[$\sqrt{2}$sin(θ-45°)+2]
當sin(θ-45°)=-1時,d取得最小值$\frac{\sqrt{6}}{2}(\sqrt{2}-1)$.
點評 此題考查了直線與圓的位置關系,涉及的知識有直線與圓的參數(shù)方程與普通方程的互化,點到直線的距離公式,兩角和與差的正弦函數(shù)公式,正弦函數(shù)的定義域與值域,以及特殊角的三角函數(shù)值,根據(jù)曲線C2的參數(shù)方程設出所求P的坐標,根據(jù)點到直線的距離公式表示出d,進而利用三角函數(shù)來解決問題是解本題的思路.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-1,1] | B. | [$\frac{1}{2}$,1] | C. | [-$\frac{1}{2}$,1] | D. | [0,1] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com