分析 1+2cos(B+C)=0,可得cosA=$\frac{1}{2}$,A.利用正弦定理可得:sinB=$\frac{\sqrt{2}}{2}$及其B,C.BC邊上的高h(yuǎn)=$\sqrt{2}$sinC.
解答 解:∵1+2cos(B+C)=0,
∴1-2cosA=0,即cosA=$\frac{1}{2}$.
∵A∈(0,π),
∴$A=\frac{π}{3}$.
由正弦定理可得:$\frac{\sqrt{3}}{sin\frac{π}{3}}$=$\frac{\sqrt{2}}{sinB}$,
∴sinB=$\frac{\sqrt{2}}{2}$,
b<a,
∴B為銳角,
∴B=$\frac{π}{4}$,
∴C=π-A-B=$\frac{5π}{12}$.
∴BC邊上的高h(yuǎn)=$\sqrt{2}$$sin\frac{5π}{12}$=$\sqrt{2}×$$\frac{\sqrt{6}+\sqrt{2}}{4}$=$\frac{\sqrt{3}+1}{2}$.
故答案為:$\frac{\sqrt{3}+1}{2}$.
點評 本題考查了正弦定理、和差公式、直角三角形邊角關(guān)系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,-7) | B. | ($\frac{1}{3}$,$\frac{2}{3}$) | C. | ($\frac{1}{2}$,$\frac{1}{2}$) | D. | (1,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 14 | C. | 18 | D. | 40 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{f({m}^{n})}{{m}^{n}}$ | B. | logmn•f(lognm) | C. | $\frac{f({n}^{m})}{{n}^{m}}$ | D. | lognm•f(logmn) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com