(本小題滿分12分)已知函數(shù) 。
如果,函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)a的取值范圍;
當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)k的取值范圍。
;。
解析試題分析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/50/a/fwiru.png" style="vertical-align:middle;" />, x >0,則, (1分)
當(dāng)時(shí),;當(dāng)時(shí),.
所以在(0,1)上單調(diào)遞增;在上單調(diào)遞減,
所以函數(shù)在處取得極大值.
因?yàn)楹瘮?shù)在區(qū)間(其中)上存在極值,
所以 解得.
(2)不等式即為 記
所以
令,則, ,
在上單調(diào)遞增, ,
從而,故在上也單調(diào)遞增,所以,
所以 .
考點(diǎn):利用導(dǎo)數(shù)來研究函數(shù)的單調(diào)性和極值。
點(diǎn)評(píng):解決恒成立問題常用變量分離法,變量分離法主要通過兩個(gè)基本思想解決恒成立問題, 思路1:在上恒成立;思路2: 在上恒成立。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),R.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù),使得函數(shù)的極值大于?若存在,求的取值范圍;若不存
在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知函數(shù)(其中e是自然對(duì)數(shù)的底數(shù),k為正數(shù))
(1)若在處取得極值,且是的一個(gè)零點(diǎn),求k的值;
(2)若,求在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在上為增函數(shù),且,為常數(shù),.
(1)求的值;
(2)若在上為單調(diào)函數(shù),求的取值范圍;
(3)設(shè),若在上至少存在一個(gè),使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)函數(shù).
(Ⅰ)若曲線在點(diǎn)處與直線相切,求的值;
(Ⅱ)求函數(shù)的極值點(diǎn)與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù)在處有極小值。
(1)求函數(shù)的解析式;
(2)若函數(shù)在只有一個(gè)零點(diǎn),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分16分)
已知函數(shù),,.
(1)當(dāng)時(shí),若函數(shù)在區(qū)間上是單調(diào)增函數(shù),試求的取值范圍;
(2)當(dāng)時(shí),直接寫出(不需給出演算步驟)函數(shù) ()的單調(diào)增區(qū)間;
(3)如果存在實(shí)數(shù),使函數(shù),()在
處取得最小值,試求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)(1)求函數(shù)的導(dǎo)數(shù).
(2)求函數(shù)f(x)=在區(qū)間[0,3]上的積分.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com