【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為,以極點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系.
(1)曲線的直角坐標(biāo)方程和點(diǎn)的直角坐標(biāo);
(2)若過點(diǎn)且傾斜角為的直線,點(diǎn)為曲線上任意一點(diǎn),求點(diǎn)到直線的最小距離.
【答案】(1) ;(2) .
【解析】
(1)根據(jù)極坐標(biāo)和直角坐標(biāo)間的互化公式求解即可得到結(jié)論.(2)轉(zhuǎn)化為直角坐標(biāo)求解,設(shè)點(diǎn)的坐標(biāo),然后根據(jù)點(diǎn)到直線的距離求解,再結(jié)合二次函數(shù)得到所求最小值.
(1)由得,
把代入上式得,
∴曲線的直角坐標(biāo)方程為.
設(shè)點(diǎn)的直角坐標(biāo)為,
則,
∴點(diǎn)的直角坐標(biāo)為.
(2)由題意得直線的方程為,即.
設(shè)點(diǎn),
則點(diǎn)到直線的距離為,
故當(dāng)時(shí),有最小值,且.
∴點(diǎn)到直線的最小距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】柴靜《穹頂之下》的播出,讓大家對霧霾天氣的危害有了更進(jìn)一步的認(rèn)識(shí),對于霧霾天氣的研究也漸漸活躍起來,某研究機(jī)構(gòu)對春節(jié)燃放煙花爆竹的天數(shù)x與霧霾天數(shù)y進(jìn)行統(tǒng)計(jì)分析,得出下表數(shù)據(jù):
x | 4 | 5 | 7 | 8 |
y | 2 | 3 | 5 | 6 |
(1)請畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測燃放煙花爆竹的天數(shù)為的霧霾天數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)討論函數(shù)在上的單調(diào)性;
(2)若,當(dāng)時(shí),,且有唯一零點(diǎn),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過直線2x+y+4=0和圓x2+y2+2x﹣4y+1=0的交點(diǎn),且面積最小的圓方程為( )
A.(x+)2+(y+)2=B.(x﹣)2+(y﹣)2=
C.(x﹣)2+(y+)2=D.(x+)2+(y﹣)2=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如右圖所示,一座圓拱(圓的一部分)橋,當(dāng)水面在圖位置m時(shí),拱頂離水面2 m,水面寬 12 m,當(dāng)水面下降1 m后,水面寬多少米?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為,為參數(shù),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
若射線l:與曲線,的交點(diǎn)分別為A,B異于原點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】電視傳媒公司為了解某地區(qū)觀眾對某體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:
將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.
(1)根據(jù)已知條件完成下面的22列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?
非體育迷 | 體育迷 | 合計(jì) | |
男 | |||
女 | 10 | 55 | |
合計(jì) |
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望E(X)和方差D(X).
附:.
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足, ,其中.
(1)設(shè),求證:數(shù)列是等差數(shù)列,并求出的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得對于恒成立,若存在,求出的最小值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com