【題目】若函數(shù)f(x)=x2﹣bx+3.
(1)若函數(shù)f(x)為R上的偶函數(shù),求b的值.
(2)若函數(shù)f(x)在(﹣∞,2]上單調(diào)遞減,求b的取值范圍.
【答案】
(1)解:若函數(shù)f(x)為R上的偶函數(shù),
則f(﹣x)=f(x)恒成立,
即x2+bx+3=x2﹣bx+3恒成立,
解得:b=0
(2)解:函數(shù)f(x)=x2﹣bx+3的圖象是開(kāi)口朝上,且以直線(xiàn)x= 為對(duì)稱(chēng)軸的拋物線(xiàn),
若函數(shù)f(x)在(﹣∞,2]上單調(diào)遞減,
則 ≥2,
解得b≥4
【解析】(1)若函數(shù)f(x)為R上的偶函數(shù),則f(﹣x)=f(x)恒成立,解得b的值.(2)若函數(shù)f(x)在(﹣∞,2]上單調(diào)遞減,則 ≥2,解得b的取值范圍.
【考點(diǎn)精析】掌握函數(shù)單調(diào)性的判斷方法和二次函數(shù)的性質(zhì)是解答本題的根本,需要知道單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較;當(dāng)時(shí),拋物線(xiàn)開(kāi)口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線(xiàn)開(kāi)口向下,函數(shù)在上遞增,在上遞減.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)記函數(shù)的兩個(gè)零點(diǎn)分別為,且.已知,若不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線(xiàn)C: (a>0,b>0)過(guò)點(diǎn)A(1,0),且離心率為
(1)求雙曲線(xiàn)C的方程;
(2)已知直線(xiàn)x﹣y+m=0與雙曲線(xiàn)C交于不同的兩點(diǎn)A,B,且線(xiàn)段AB的中點(diǎn)在圓x2+y2=5上,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|x2﹣5x+6=0},B={x|mx﹣1=0},且A∩B=B,求由實(shí)數(shù)m所構(gòu)成的集合M,并寫(xiě)出M的所有子集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四組函數(shù)中,f(x)與g(x)是同一函數(shù)的一組是( )
A.f(x)=|x|,g(x)=
B.f(x)=x,g(x)=( )2
C.f(x)= ,g(x)=x+1
D.f(x)=1,g(x)=x0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知z為復(fù)數(shù),ω=z+ 為實(shí)數(shù),
(1)當(dāng)﹣2<ω<10,求點(diǎn)Z的軌跡方程;
(2)當(dāng)﹣4<ω<2時(shí),若u= (α>0)為純虛數(shù),求:α的值和|u|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),Sn為其前n項(xiàng)和,且對(duì)任意的n∈N* , 均有an , Sn , 成等差數(shù)列,則an= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com