10.二項(xiàng)式${({\frac{x}{{\sqrt{2}}}-y})^8}$的展開(kāi)式中,x4y4與x2y6項(xiàng)的系數(shù)之和是$\frac{63}{2}$(用數(shù)字作答).

分析 寫(xiě)出二項(xiàng)式的通項(xiàng)公式,利用冪指數(shù)求解x4y4與x2y6項(xiàng)的系數(shù)之和.

解答 解:${(\frac{x}{{\sqrt{2}}}-y)^8}$的展開(kāi)式的通項(xiàng)為${T_{r+1}}=C_8^r{(\frac{x}{{\sqrt{2}}})^{8-r}}{(-y)^r}=\frac{{{{(-1)}^r}}}{{{{(\sqrt{2})}^{8-r}}}}C_8^r{x^{8-r}}{y^r}$
當(dāng)r=4時(shí),可得x4y4的系數(shù)為$\frac{{{{(-1)}^4}}}{{{{(\sqrt{2})}^{8-4}}}}C_8^4=\frac{35}{2}$;
當(dāng)r=6時(shí),可得x2y6的系數(shù)為$\frac{{{{(-1)}^6}}}{{{{(\sqrt{2})}^{8-6}}}}C_8^6=14$;
所以x4y4與x2y6的系數(shù)之和是$\frac{35}{2}+14=\frac{63}{2}$.
故答案為:$\frac{63}{2}$.

點(diǎn)評(píng) 本題考查二項(xiàng)式定理的應(yīng)用,系數(shù)的性質(zhì)的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖所示,在斜三棱柱ABC-A1B1C1中,AB=BC=1,AA1=2,D是AC的中點(diǎn),AB⊥平面B1C1CB,∠BCC1=60°.
(1)求證:AC⊥平面BDC1;
(2)求二面角B1-BC1-A1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知x,y滿(mǎn)足$\left\{\begin{array}{l}{x+2y≤4}\\{x-y≤1}\\{x+2≥0}\end{array}\right.$,目標(biāo)函數(shù)z=1-2x-y的最大值為a,最小值為b,則a-b=( 。
A.10B.12C.14D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已z0=2+2i,|z-z0|=$\sqrt{2}$,當(dāng)z=1+i時(shí),|z|有最小值,最小值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{x}{lnx}$-ax.
(Ⅰ)若函數(shù)f(x)在(1,+∞)上是減函數(shù),求實(shí)數(shù)a的最小值;
(Ⅱ)已知f′(x)表示f(x)的導(dǎo)數(shù),若?x1,x2∈[e,e2](e為自然對(duì)數(shù)的底數(shù)),使f(x1)-f′(x2)≤a成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.在△ABC中,a,b,c分別是內(nèi)角A,B,C的對(duì)邊,若A=$\frac{2π}{3}$,b=$\sqrt{2}$,△ABC的面積為$\sqrt{3}$,則a的值為$\sqrt{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)$α∈\left\{{\left.{-1\;,\;\;1\;,\;\;\sqrt{2}\;,\;\;\frac{3}{5}\;,\;\;\frac{7}{2}}\right\}}\right.$,則使函數(shù)y=xα的定義域?yàn)镽且為奇函數(shù)的所有α值為1,$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.如圖,在矩形ABCD中,AB=$\sqrt{3}$AD,點(diǎn)Q為線段CD(含端點(diǎn))上一個(gè)動(dòng)點(diǎn),且$\overrightarrow{DQ}$=λ$\overrightarrow{QC}$,BQ交AC于P,且$\overrightarrow{AP}$=μ$\overrightarrow{PC}$,若AC⊥BP,則λ-μ=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.(2x+5y)2016展開(kāi)式中第k+1項(xiàng)的系數(shù)為( 。
A.$C_{2016}^k{2^{2016-k}}{5^{k-1}}$B.$C_{2016}^{k-1}{2^{2017-k}}{5^{k-1}}$
C.$C_{2016}^{k-1}$D.$C_{2016}^k{2^{2016-k}}{5^k}$

查看答案和解析>>

同步練習(xí)冊(cè)答案