【題目】已知雙曲線 的右焦點為F(c,0).
(1)若雙曲線的一條漸近線方程為y=x且c=2,求雙曲線的方程;
(2)以原點O為圓心,c為半徑作圓,該圓與雙曲線在第一象限的交點為A , 過A作圓的切線,斜率為 ,求雙曲線的離心率.
【答案】
(1)
【解答】∵雙曲線的漸近線為y=± x,∴a=b.
∴c2=a2+b2=2a2=4.
∴a2=b2=2.
∴雙曲線方程為
(2)
【解答】設(shè)點A的坐標為(x0,y0),
∴直線AO的斜率滿足 ·(- )=-1.
∴x0= y0.①
依題意,圓的方程為x2+y2=c2,
將①代入圓的方程得3y+y=c2,即y0= c,
∴x0=c.
∴點A的坐標為().
代入雙曲線方程得
即 b2c2- a2c2=a2b2,②
又∵a2+b2=c2,
∴將b2=c2-a2代入②式,整理得
c4-2a2c2+a4=0,
∴,
∴(3e2-2)(e2-2)=0,
∵e>1,∴e= ,∴雙曲線的離心率為 .
【解析】(1)根據(jù)雙曲線的一條漸近線方程為y=x , 雙曲線的漸近線為y=± x , 所以a=b.求解即可;(2)因為是以原點O為圓心,c為半徑作圓,可得圓的方程為x2+y2=c2 , 該圓與雙曲線在第一象限的交點為A , 過A作圓的切線,斜率為- ,可設(shè)點A的坐標為(x0 , y0),直線AO的斜率滿足 ·(- )=-1.代入圓的方程,化簡即可。
科目:高中數(shù)學 來源: 題型:
【題目】商家生產(chǎn)一種產(chǎn)品,需要先進行市場調(diào)研,計劃對天津、成都、深圳三地進行市場調(diào)研,待調(diào)研結(jié)束后決定生產(chǎn)的產(chǎn)品數(shù)量,下列四種方案中最可取的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班20名同學某次數(shù)學測試的成績可繪制成如圖莖葉圖.由于其中部分數(shù)據(jù)缺失,故打算根據(jù)莖葉圖中的數(shù)據(jù)估計全班同學的平均成績.
(1)完成頻率分布直方圖;
(2)根據(jù)(1)中的頻率分布直方圖估計全班同學的平均成績(同一組中的數(shù)據(jù)用改組區(qū)間的中點值作代表);
(3)根據(jù)莖葉圖計算出的全班的平均成績?yōu)?/span>,并假設(shè),且取得每一個可能值的機會相等,在(2)的條件下,求概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)在區(qū)間上的單調(diào)性;
(2)已知函數(shù),若,且函數(shù)在區(qū)間內(nèi)有零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l經(jīng)過兩條直線l1:3x+4y﹣2=0與l2:2x+y+2=0的交點P.
(1)求垂直于直線l3:x﹣2y﹣1=0的直線l的方程;
(2)求與坐標軸相交于兩點,且以P為中點的直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中正確的是( ).
A.已知F1(-4,0),F(xiàn)2(4,0),到F1,F2兩點的距離之和等于8的點的軌跡是橢圓
B.已知F1(-4,0),F(xiàn)2(4,0),到F1,F2兩點的距離之和為6的點的軌跡是橢圓
C.到F1(-4,0),F(xiàn)2(4,0)兩點的距離之和等于點M(5,3)到F1,F2的距離之和的點的軌跡是橢圓
D.到F1(-4,0),F(xiàn)2(4,0)兩點距離相等的點的軌跡是橢圓
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2+ax+b,a,b∈R.
(1)若a+b=3,當x∈[1,2]時,f(x)≥0恒成立,求實數(shù)a的取值范圍;
(2)是否存在實數(shù)對(a,b),使得不等式|f(x)|>2在區(qū)間[1,5]上無解,若存在,試求出所有滿足條件的實數(shù)對(a,b);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù).
(1)當時,在上恒成立,求實數(shù)的取值范圍;
(2)當時,若函數(shù)在上恰有兩個不同的零點,求實數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin +e﹣|x﹣1| , 有下列四個結(jié)論:
①圖象關(guān)于直線x=1對稱;
②f(x)的最大值是2;
③f(x)的最大值是﹣1,;
④f(x)在區(qū)間[﹣2015,2015]上有2015個零點.
其中正確的結(jié)論是(寫出所有正確的結(jié)論序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com