【題目】已知函數(shù) .

(1)判斷并證明函數(shù)的單調(diào)性;

(2)若函數(shù)為奇函數(shù),求實(shí)數(shù)的值;

(3)在(2)條件下,若對(duì)任意的正數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1)增函數(shù)(2)(3)的取值范圍

【解析】

(1)在定義域上任取兩個(gè)變量,且規(guī)定大小,再將對(duì)應(yīng)的函數(shù)值作差變形看符號(hào),利用單調(diào)性的定義即可得到結(jié)論.

(2)由fx)是R上的奇函數(shù)所以fx)+f(﹣x)=0求得.

(3)先求得a,結(jié)合(1)(2)得對(duì)任意的﹥0恒成立,利用二次函數(shù)圖像及性質(zhì)可得答案.

(1)函數(shù)為R上的增函數(shù),證明如下:

函數(shù)的定義域?yàn)镽,對(duì)任意

設(shè),

因?yàn)?/span>為R上的增函數(shù),且,所以﹤0,﹤0, 函數(shù)為R上的增函數(shù)。

(2)∵函數(shù)為奇函數(shù)

,∴

當(dāng)時(shí),

此時(shí),函數(shù)為奇函數(shù),滿足題意。

所以.

(3)因?yàn)楹瘮?shù)為奇函數(shù),從而不等式﹥0對(duì)任意的恒成立等價(jià)于不等式對(duì)任意的恒成立。

又因?yàn)樵冢ā蓿?∞)上為增函數(shù),

所以等價(jià)于不等式對(duì)任意的﹥0恒成立,

即2﹥0對(duì)任意的﹥0恒成立.

所以必須有﹥0且△﹤0;或,

所以實(shí)數(shù)的取值范圍

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)從某醫(yī)院中隨機(jī)抽取了7位醫(yī)護(hù)人員的關(guān)愛患者考核分?jǐn)?shù)(患者考核:10分制),用相關(guān)的特征量表示;醫(yī)護(hù)專業(yè)知識(shí)考核分?jǐn)?shù)(試卷考試:100分制),用相關(guān)的特征量表示,數(shù)據(jù)如下表:

特征量

1

2

3

4

5

6

7

98

88

96

91

90

92

96

9.9

8.6

9.5

9.0

9.1

9.2

9.8

(1)求關(guān)于的線性回歸方程(計(jì)算結(jié)果精確到0.01);

(2)利用(1)中的線性回歸方程,分析醫(yī)護(hù)專業(yè)考核分?jǐn)?shù)的變化對(duì)關(guān)愛患者考核分?jǐn)?shù)的影響,并估計(jì)某醫(yī)護(hù)人員的醫(yī)護(hù)專業(yè)知識(shí)考核分?jǐn)?shù)為95分時(shí),他的關(guān)愛患者考核分?jǐn)?shù)(精確到0.1)

附:回歸直線方程中斜率和截距的最小二乘法估計(jì)公式分別為

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是函數(shù)圖像上兩個(gè)不同的交點(diǎn),則的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)= ,其中 =(2cosx,﹣ sin2x), =(cosx,1)(x∈R).
(1)求f(x)的周期和單調(diào)遞減區(qū)間;
(2)在△ABC 中,角A、B、C的對(duì)邊分別為a,b,c,f(A)=﹣1,a= , =3,求邊長(zhǎng)b和c的值(b>c).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)招聘大學(xué)畢業(yè)生,經(jīng)過綜合測(cè)試,錄用了14名女生和6名男生,這20名學(xué)生的測(cè)試成績(jī)?nèi)缜o葉圖所示(單位:分),記成績(jī)不小于80分者為等,小于80分者為等.

(1)求女生成績(jī)的中位數(shù)及男生成績(jī)的平均數(shù);

(2)如果用分層抽樣的方法從等和等中共抽取5人組成“創(chuàng)新團(tuán)隊(duì)”,則從等和等中分別抽幾人?

(3)在(2)問的基礎(chǔ)上,現(xiàn)從該“創(chuàng)新團(tuán)隊(duì)”中隨機(jī)抽取2人,求至少有1人是等的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)某種產(chǎn)品的固定成本(固定投入)2500元,已知每生產(chǎn)x件這樣的產(chǎn)品需要再增加可變成本C(x)=200xx3(),若生產(chǎn)出的產(chǎn)品都能以每件500元售出,要使利潤(rùn)最大,該廠應(yīng)生產(chǎn)多少件這種產(chǎn)品?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)招聘大學(xué)畢業(yè)生,經(jīng)過綜合測(cè)試,錄用了14名女生和6名男生,這20名學(xué)生的測(cè)試成績(jī)?nèi)缜o葉圖所示(單位:分),記成績(jī)不小于80分者為等,小于80分者為等.

(1)求女生成績(jī)的中位數(shù)及男生成績(jī)的平均數(shù);

(2)如果用分層抽樣的方法從等和等中共抽取5人組成“創(chuàng)新團(tuán)隊(duì)”,則從等和等中分別抽幾人?

(3)在(2)問的基礎(chǔ)上,現(xiàn)從該“創(chuàng)新團(tuán)隊(duì)”中隨機(jī)抽取2人,求至少有1人是等的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】log0.72,log0.70.8,0.92的大小順序是(
A.log0.72<log0.70.8<0.92
B.log0.70.8<log0.72<0.92
C.0.92<log0.72<log0.70.8
D.log0.72<0.92<log0.70.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,圓C的方程為(x+6)2+y2=25. (Ⅰ)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求C的極坐標(biāo)方程;
(Ⅱ)直線l的參數(shù)方程是 (t為參數(shù)),l與C交與A,B兩點(diǎn),|AB|= ,求l的斜率.

查看答案和解析>>

同步練習(xí)冊(cè)答案