8.?dāng)?shù)列{an}前n項(xiàng)和為Sn,若a1=2,an=2an-1-1(n≥2,n∈N*),則S10=( 。
A.513B.1023C.1026D.1033

分析 由已知推導(dǎo)出{an-1}是首項(xiàng)為1,公比為2的等比數(shù)列,由此利用分組求和法能求出S10

解答 解:∵數(shù)列{an}前n項(xiàng)和為Sn,a1=2,an=2an-1-1(n≥2,n∈N*),
∴an-1=2(an-1-1),
又a1-1=2-1=1,
∴{an-1}是首項(xiàng)為1,公比為2的等比數(shù)列,
∴${a}_{n}-1={2}^{n-1}$,
∴an=2n-1+1,
∴S10=20+2+22+…+29+1×10
=$\frac{1×(1-{2}^{10})}{1-2}+10$
=1033.
故選:D.

點(diǎn)評(píng) 本題考查數(shù)列的前10項(xiàng)和的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意構(gòu)造法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若數(shù)列{an}的前n項(xiàng)和為Sn,滿足a1=1,Sn=an+1+n,則其通項(xiàng)公式為${a}_{n}=\left\{\begin{array}{l}{1,n=1}\\{1-{2}^{n-2},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.方程2x+x=0的根所在的區(qū)間是( 。
A.(-1,-$\frac{1}{2}$)B.(-$\frac{1}{2}$,0)C.(0,$\frac{1}{2}$)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知等比數(shù)列{an}的公比為正數(shù),且a4•a8=2a52,a2=1,則a1=(  )
A.$\frac{1}{2}$B.2C.$\sqrt{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.不等式x2-x-2>0的解集是( 。
A.(-1,2)B.(-∞,-1)∪(2,+∞)C.(-∞-2)∪(1,+∞)D.(-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3..已知二次函數(shù)f(x)滿足f(x+2)=f(2-x),且f(x)=0的兩根積為3,f(x)的圖象過(0,3),求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.命題“?x∈R,x<sin x或x>tan x”的否定為( 。
A.?x∈R,x<sinx且x>tanxB.?x∈R,x≥sinx或x≤tanx
C.?x∈R,x<sinx或x>tanxD.?x∈R,x≥sinx且x≤tanx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)f(x)為奇函數(shù),且f(x)在(-∞,0)內(nèi)是增函數(shù),f(-2)=0,則xf(x)>0的解集為(-∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知甲、乙兩組數(shù)據(jù)如莖葉圖所示,若它們的中位數(shù)相同,平均數(shù)也相同,
(1)求m,n的取值.
(2)比較甲、乙兩組數(shù)據(jù)的穩(wěn)定性,并說明理由.
注:方差公式s2=$\frac{({x}_{1}-\overline{x})^{2}+({x}_{2}-\overline{x})^{2}+…+({x}_{n}+\overline{x})^{2}}{n}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案