在長方體ABCD-A1B1C1D1中,點(diǎn)P為棱AB的中點(diǎn),且AB=2,,AD=1.

(1)

求證:AB1⊥平面A1PD1

(2)

求二面角A1-D1P-B1的正切值;

(3)

求點(diǎn)D到平面A1D1P的距離.

答案:
解析:

(1)

證明:∵是長方體

(2)

解:設(shè)

過E作棱的垂線EF,垂足為F,連結(jié)B1F

則EF是B1F在平面A1PD1內(nèi)的射影,由三垂線定理得

在Rt△B1EF中,…………10分

(3)

解:∵AD//A1D1,且

∴AD//平面

∴點(diǎn)D到平面的距離等于點(diǎn)A到平面A1D1P的距離


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

9、如圖,在長方體ABCD-A1B1C1D1中,EF∥B1C1,用    平面BCFE把這個(gè)長方體分成了(1)、(2)兩部分后,這兩部分幾何體的形狀是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體ABCD-A1B1C1D1中,AA1=AD=a,AB=2a,E、F分別為A1B1、A1D1的中點(diǎn).
(Ⅰ)求證:AE⊥平面BCE;
(Ⅱ)求證:DF∥平面ACE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:一點(diǎn)到它在一個(gè)平面內(nèi)的正射影的距離叫做這一點(diǎn)到這個(gè)平面的距離.如圖,在長方體ABCD-A1B1C1D1中,點(diǎn)P是側(cè)面BCC1B1內(nèi)一動(dòng)點(diǎn),若點(diǎn)P到直線C1D1的距離是點(diǎn)P到平面ABCD的距離的
1
2
倍,則動(dòng)點(diǎn)P的軌跡所在的曲線類型是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海) 如圖,在長方體ABCD-A′B′C′D′中,AB=2,AD=1,AA′=1.證明直線BC′平行于平面D′AC,并求直線BC′到平面D′AC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在長方體ABCDABCD′中,截下一個(gè)棱錐CADD′,求棱錐CADD′的體積與剩余部分的體積之比.

查看答案和解析>>

同步練習(xí)冊(cè)答案