實系數(shù)一元二次方程x2+ax+b=0的一根為x1=
3+i
1+i
(其中i為虛數(shù)單位),則a+b=
 
考點:復(fù)數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復(fù)數(shù)
分析:由復(fù)數(shù)代數(shù)形式的除法運算化簡x1,然后由實系數(shù)一元二次方程虛根成對得到另一根,再由根與系數(shù)關(guān)系列式求a,b的值,則答案可求.
解答: 解:x1=
3+i
1+i
=
(3+i)(1-i)
(1+i)(1-i)
=
4-2i
2
=2-i

由實系數(shù)一元二次方程的虛根成對原理可知,一元二次方程x2+ax+b=0的另一根x2=2+i,
再由根與系數(shù)關(guān)系得
(2-i)+(2+i)=-a
(2-i)(2+i)=b
,解得:
a=-4
b=5

∴a+b=1.
故答案為:1.
點評:本題考查復(fù)數(shù)代數(shù)形式的除法運算,考查了實系數(shù)一元二次方程虛根成對原理,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

己知集合A={y|y=x2+1,x∈Z},B={y|=-x2-3x+1,x∈Z},則用列舉法表示A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(x-2)是偶函數(shù),且對任意x∈R恒有f(3-x)+f(x-1)=2014,又f(4)=2013,則f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3-sinx的最大值是
 
,最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)若P,Q為y=1-x2上在y軸兩側(cè)的點,則過P,Q點的切線與x軸圍成的三角形的面積的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

冪函數(shù)y=kxa的圖象經(jīng)過點(4,2),那么f(
1
2
)×f(8)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從1,2,3,…,9,10這10個整數(shù)中任意取3個不同的數(shù)作為二次函數(shù)f(x)=ax2+bx+c的系數(shù),則滿足
f(1)
3
∈N的方法有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan(α+β)=
2
5
,tan(α+
π
4
)=
3
22
,則tan(β-
π
4
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x),g(x)為奇函數(shù),證明φ(x)=f(x)×g(x)是偶函數(shù).

查看答案和解析>>

同步練習(xí)冊答案