11.已知△ABC內(nèi)角A,B,C的對(duì)邊分別是a,b,c,若cosB=$\frac{1}{4}$,b=4,sinC=2sinA,則△ABC的面積為( 。
A.$\frac{{2\sqrt{15}}}{3}$B.$\sqrt{15}$C.$2\sqrt{15}$D.$4\sqrt{15}$

分析 sinC=2sinA,利用正弦定理可得:c=2a,由余弦定理可得:b2=a2+c2-2accosB,即42=a2+c2-$\frac{1}{2}$ac,與c=2a聯(lián)立解出即可得出.

解答 解:∵sinC=2sinA,∴c=2a,
由余弦定理可得:b2=a2+c2-2accosB,
∴42=a2+c2-$\frac{1}{2}$ac,與c=2a聯(lián)立解得a=2,c=4.
∵cosB=$\frac{1}{4}$,B∈(0,π),∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{\sqrt{15}}{4}$.
則△ABC的面積S=$\frac{1}{2}ac$sinB=$\frac{1}{2}×2×4×\frac{\sqrt{15}}{4}$=$\sqrt{15}$.
故選:B.

點(diǎn)評(píng) 本題考查了正弦定理余弦定理、三角函數(shù)求值、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)直線y=$\frac{1}{2}$x+b是曲線y=lnx的一條切線,則b的值為( 。
A.ln2-1B.ln2-2C.2ln2-1D.2ln2-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.{an}滿足an+1=an+an-1(n∈N*,n≥2),Sn是{an}前n項(xiàng)和,a5=1,則S6=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在20件產(chǎn)品中5件次品,其余都是合格品,從中任取2件,2件都是合格品的概率為$\frac{21}{38}$(用分?jǐn)?shù)作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.2015年7月,“國務(wù)院關(guān)于積極推進(jìn)“‘互聯(lián)網(wǎng)+’行動(dòng)的指導(dǎo)意見”正式公布,在“互聯(lián)網(wǎng)+”的大潮下,我市某高中“微課堂”引入教學(xué),某高三教學(xué)教師錄制了“導(dǎo)數(shù)的應(yīng)用”與“概率的應(yīng)用”兩個(gè)單元的微課視頻放在所教兩個(gè)班級(jí)(A班和B班)的網(wǎng)頁上,A班(實(shí)驗(yàn)班,基礎(chǔ)較好)共有學(xué)生50人,B班(普通班,基礎(chǔ)較差)共有學(xué)生60人,該教師規(guī)定兩個(gè)班的每一名同學(xué)必須在某一天觀看其中一個(gè)單元的微課視頻,第二天經(jīng)過統(tǒng)計(jì),A班有30人觀看了“導(dǎo)數(shù)的應(yīng)用”視頻,其他20人觀看了“概率的應(yīng)用”視頻,B班有25人觀看了“導(dǎo)數(shù)的應(yīng)用”視頻,其他35人觀看了“概率的應(yīng)用”視頻.
(1)完成下列2×2列聯(lián)表:
 觀看“導(dǎo)數(shù)的應(yīng)用”
視頻人數(shù)
觀看“概率的應(yīng)用”
視頻人數(shù)
總計(jì)
A班   
B班   
總計(jì)   
判斷是否有95%的把握認(rèn)為學(xué)生選擇兩個(gè)視頻中的哪個(gè)與班級(jí)有關(guān)?
(2)在A班中用分層抽樣的方法抽取5人進(jìn)行學(xué)習(xí)效果調(diào)查;
①求抽取的5人中觀看“導(dǎo)數(shù)的應(yīng)用”視頻的人數(shù)及觀看“概率的應(yīng)用”視頻的人數(shù);
②在抽取的5人中抽取2人,求這2人中至少有一個(gè)觀看“概率的應(yīng)用”視頻的概率;
參考公式:k2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$
參考數(shù)據(jù):
P(x2≥k00.500.400.250.050.0250.010
k00.4550.7081.3233.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.二次函數(shù)f(x)=x2+x,當(dāng)x∈[n,n+1](n∈N*)時(shí),f(x)函數(shù)值中所有整數(shù)值的個(gè)數(shù)為g(n),an=$\frac{{2{n^3}+3{n^2}}}{g(n)}$(n∈N*),求Sn=a1-a2+a3-a4+…+(-1)n-1an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知向量$\overrightarrow a$=(-3,1),$\overrightarrow b$=(-1,2),如果向量$\overrightarrow a$+λ$\overrightarrow b$與$\overrightarrow b$垂直,則實(shí)數(shù)λ=( 。
A.$-\frac{4}{3}$B.1C.-1D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$=(-4,3),$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$垂直,則|$\overrightarrow$|的值是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.函數(shù)f(x)=x+$\frac{a}{|x|+1}$
(1)當(dāng)a=4時(shí),求f(x)的單調(diào)區(qū)間;
(2)若9>a>0,求f(x)在區(qū)間[-1,2]上的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案