2.{an}滿足an+1=an+an-1(n∈N*,n≥2),Sn是{an}前n項和,a5=1,則S6=4.

分析 設(shè)a4=k,結(jié)合數(shù)列遞推式及a5=1求得其它項,作和求得S6

解答 解:設(shè)a4=k,由an+1=an+an-1,得a3=a5-a4=1-k,
a2=a4-a3=k-(1-k)=2k-1,a1=a3-a2=(1-k)-(2k-1)=2-3k,
a6=a5+a4=1+k,
∴S6=a1+a2+a3+a4+a5+a6=(2-3k)+(2k-1)+(1-k)+k+1+(1+k)=4.
故答案為:4.

點評 本題考查數(shù)列遞推式,考查了數(shù)列的函數(shù)特性,設(shè)出a4是關(guān)鍵,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.甲口袋中裝有10個紅球,8個白球,乙口袋中裝有12個紅球,6個白球,現(xiàn)分別從甲、乙口袋中各任意取出1個小球.求:(1)取得兩個球都是紅球,有多少種取法?
(2)取得兩個球中恰有一個是紅球,有多少種取法?
(3)取得兩個球中至少有一個是紅球,有多少種取法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.福彩中心發(fā)行彩票的目的是為了獲取資金資助福利事業(yè),現(xiàn)在福彩中心準備發(fā)行一種面值為5元的福利彩票刮刮卡,設(shè)計方案如下:①該福利彩票中獎率為50%;②每張中獎彩票的中獎獎金有5元,50元和150元三種;③顧客購買一張彩票獲得150元獎金的概率為p,獲得50元獎金的概率為2%.
(1)假設(shè)某顧客一次性花15元購買三張彩票,求其至少有兩張彩票中獎的概率;
(2)為了能夠籌得資金資助福利事業(yè),求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某公司計劃在甲、乙兩個電視臺做總時間不超過300分鐘的廣告,廣告總費用不超過9萬元.甲、乙電視臺的廣告收費標準分別為500元/分鐘和200元/分鐘.甲、乙兩個電視臺為該公司所做的每分鐘廣告,能給公司帶來的收益分別為0.3萬元和0.2萬元.設(shè)該公司在甲、乙兩個電視臺做廣告的時間分別為x分鐘和y分鐘.
(Ⅰ)用x,y列出滿足條件的數(shù)學(xué)關(guān)系式,并在坐標系中用陰影表示相應(yīng)的平面區(qū)域;
(Ⅱ)該公司如何分配在甲、乙兩個電視臺做廣告的時間使公司的收益最大,最大收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若實數(shù)x和y滿足$\left\{\begin{array}{l}{3x+2y-6≥0}\\{3x-2y+6≥0}\\{2x-y-4≤0}\end{array}\right.$,則x2+y2的最小值是( 。
A.2B.$\frac{36}{13}$C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若圓x2+y2=R2(R>0)與曲線||x|-|y||=1的全體公共點恰好是一個正多邊形的頂點,則R=$\sqrt{2+\sqrt{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}是單調(diào)遞增數(shù)列,且a1>0,若an2=4Sn-2an+3,n∈N*,其中Sn為{an}的前n項和.
(1)求數(shù)列{an}的通項公式;
(2)若使不等式$\frac{{{a_{n+p}}-8}}{{{a_n}-8}}$≥1+$\frac{p+8}{{{{(\sqrt{2})}^{{a_n}-1}}}}$對n≥4,n∈N*恒成立,求正數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知△ABC內(nèi)角A,B,C的對邊分別是a,b,c,若cosB=$\frac{1}{4}$,b=4,sinC=2sinA,則△ABC的面積為(  )
A.$\frac{{2\sqrt{15}}}{3}$B.$\sqrt{15}$C.$2\sqrt{15}$D.$4\sqrt{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知向量$\overrightarrow{a}$=(-3,4),向量$\overrightarrow$與$\overrightarrow{a}$方向相反,且$\overrightarrow$=λ$\overrightarrow{a}$,|$\overrightarrow$|=1,則實數(shù)λ的值為(  )
A.-$\frac{3}{4}$B.-$\frac{1}{5}$C.$\frac{1}{5}$D.$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案