精英家教網 > 高中數學 > 題目詳情

【題目】為建設美麗鄉(xiāng)村,政府欲將一塊長12百米,寬5百米的矩形空地ABCD建成生態(tài)休閑園,園區(qū)內有一景觀湖EFG(圖中陰影部分),以AB所在直線為x軸,AB的垂直平分線為y軸,建立平面直角坐標系xOy(如圖所示).景觀湖的邊界線符合函數y=x+ (x>0)模型,園區(qū)服務中心P在x軸正半軸上,PO= 百米.
(1)若在點O和景觀湖邊界曲線上一點M之間修建一條休閑長廊OM,求OM的最短長度;
(2)若在線段DE上設置一園區(qū)出口Q,試確定Q的位置,使通道PQ最短.

【答案】
(1)解:設M(x,x+ ),則|OM|2=x2+(x+ 2=2x2+ +2≥2 +2,

當且僅當2x2= 即x2= 時取等號,

∴|OM|的最短距離為


(2)解:過P作函數y=x+ 的切線l,設切線l的方程為y=k(x﹣ )(k<0),

聯立方程組 ,得(1﹣k)x2+ x+1=0,

令△= k2﹣4(1﹣k)=0得k=﹣3或k= (舍),

∴直線l的方程為y=﹣3(x﹣ ),

令y=5得x=﹣ ,

∴DQ=6﹣ =

∴當|DQ|= 時,通道PQ最短


【解析】(1)設M(x,x+ ),利用距離公式得出|OM|2關于x的函數,利用基本不等式求出最小值即可;(2)當直線PQ與湖邊界相切時,通道最短,設出切線方程,與邊界函數聯立,令△=0即可得出切線方程,從而確定Q點的位置.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】一個多面體的直觀圖、正視圖、側視圖、俯視圖如圖,M,N分別為A1B,B1C1的中點.

下列結論中正確的個數有 (  )

①直線MN與A1C相交.

②MN⊥BC.

③MN∥平面ACC1A1.

④三棱錐N-A1BC的體積為=a3.

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是一座橋的截面圖,橋的路面由三段曲線構成,曲線AB和曲線DE分別是頂點在路面A、E的拋物線的一部分,曲線BCD是圓弧,已知它們在接點B、D處的切線相同,若橋的最高點C到水平面的距離H=6米,圓弧的弓高h=1米,圓弧所對的弦長BD=10米.
(1)求弧 所在圓的半徑;
(2)求橋底AE的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓M軸相切.

(1)的值;

(2)求圓M軸上截得的弦長;

(3)若點是直線上的動點,過點作直線與圓M相切,為切點,求四邊形面積的最小值.

【答案】(1) (2) (3)

【解析】試題分析:(1)先將圓的一般方程化成標準方程,利用直線和圓相切進行求解;(2),得到關于的一元二次方程進行求解;(3)將四邊形的面積的最小值問題轉化為點到直線的的距離進行求解.

試題解析:(1)   ∵圓M軸相切  

   

(2) ,則  

 

(3)

 的最小值等于點到直線的距離, 

 

∴四邊形面積的最小值為

型】解答
束】
20

【題目】在平面直角坐標系中,圓的方程為,且圓軸交于, 兩點,設直線的方程為

(1)當直線與圓相切時,求直線的方程;

(2)已知直線與圓相交于, 兩點.

(ⅰ)若,求實數的取值范圍;

(ⅱ)直線與直線相交于點,直線,直線,直線的斜率分別為, ,

是否存在常數,使得恒成立?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量m (sin ,1), =(1, cos ),函數f(x)=
(1)求函數f(x)的最小正周期;
(2)若f(α﹣ )= ,求f(2α+ )的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,且時,總有成立.

a的值;

判斷并證明函數的單調性;

上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 ,
(I)求 的單調區(qū)間;
(II)若對任意的 ,都有 ,求實數 的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 經過點 ,其離心率 .
(Ⅰ)求橢圓 的方程;
(Ⅱ)設動直線 與橢圓 相切,切點為 ,且 與直線 相交于點
試問:在 軸上是否存在一定點,使得以 為直徑的圓恒過該定點?若存在,
求出該點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2﹣alnx+x(a∈R)
(Ⅰ)當a=1時,求曲線y=f(x)在點A(1,f(1))處的切線方程;
(Ⅱ)討論函數y=f(x)的單調性.

查看答案和解析>>

同步練習冊答案