4.圓C1:x2+y2=1與圓C2:(x-3)2+(y-4)2=16的位置關(guān)系是(  )
A.外離B.相交C.內(nèi)切D.外切

分析 根據(jù)兩圓圓心之間的距離和半徑之間的關(guān)系進(jìn)行判斷.

解答 解:圓x2+y2=1的圓心O(0,0),半徑r=1,
圓(x-3)2+(y-4)2=16,圓心A(3,4),半徑R=4,
兩圓心之間的距離|AO|=5=4+1=2=R+r,
∴兩圓外切.
故選D.

點評 本題主要考查圓與圓的位置關(guān)系的判斷,利用圓心距離和半徑之間的關(guān)系是解決圓與圓位置關(guān)系的主要依據(jù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,BC=a,AC=b,a,b是方程${x^2}-2\sqrt{3}x+2=0$的兩個根,且2cosC=1.
求:(1)角C的度數(shù);
(2)AB的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.cos20°•cos10°-sin20°sin10°=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)=|x-1|+|x+2|+|x+P|的最小值為3,則實數(shù)P的取值范圍是(  )
A.(-∞,-2)B.(1,+∞)C.[-2,1]D.[-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若m=${∫}_{0}^{\frac{π}{2}}$$\sqrt{2}$sin(x+$\frac{π}{4}$)dx,則二項式($\sqrt{x}$-$\frac{m}{\sqrt{x}}$)6展開式中含x項的系數(shù)是60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=2sin(2ωx+$\frac{π}{4}$)(ω>0)的最小正周期為π.
(1)求ω的值;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某賣場同時銷售變頻冷暖空調(diào)機(jī)和智能洗衣機(jī),這兩種產(chǎn)品的市場需求量大,有多少賣多少.今年元旦假期7天該賣場要根據(jù)實際情況確定產(chǎn)品的進(jìn)貨數(shù)量,以達(dá)到總利潤最大.已知兩種產(chǎn)品直接受資金和勞動力的限制.根據(jù)過去銷售情況,得到兩種產(chǎn)品的有關(guān)數(shù)據(jù)如表:(表中單位:百元)
資金單位產(chǎn)品所需資金資金供應(yīng)量
空調(diào)機(jī)洗衣機(jī)
成本3020440
勞動力:工資710156
單位利潤108
試問:怎樣確定兩種貨物的進(jìn)貨量,才能使7天的總利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.由xy=1,y=x,x=3所圍成的封閉區(qū)域的面積為( 。
A.2ln3B.2+ln3C.4-2ln3D.4-ln3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知f(x)=ax+b的圖象過點(1,7)和(0,4),則f(x)的表達(dá)式是( 。
A.f(x)=3x+4B.f(x)=4x+3C.f(x)=2x+5D.f(x)=5x+2

查看答案和解析>>

同步練習(xí)冊答案