分析 判斷f(x)的單調(diào)性,計(jì)算極值,作出f(x)的函數(shù)圖象,根據(jù)圖象得出t的范圍,求出a,即可得出$\frac{t}{a}$關(guān)于t的函數(shù),求出此函數(shù)的值域即可.
解答 解:當(dāng)x<0時(shí),f(x)為增函數(shù),且當(dāng)x→-∞時(shí),f(x)→-$\frac{1}{e}$.
當(dāng)x>0時(shí),f′(x)=$\frac{1-lnx}{{x}^{2}}$,
∴當(dāng)0<x<e時(shí),f′(x)>0,f(x)單調(diào)遞增,
當(dāng)x>e時(shí),f′(x)<0,f(x)單調(diào)遞減,
又當(dāng)x→0時(shí),f(x)→-∞,當(dāng)x→+∞時(shí),f(x)→0,
∴當(dāng)x=e時(shí),f(x)取得極大值f(e)=$\frac{1}{e}$.
作出f(x)在定義域的函數(shù)圖象如圖所示:
∵f(x)=t有三解,∴0$<t<\frac{1}{e}$,
令-$\frac{2}{x}-\frac{1}{e}$=t得x=-$\frac{2}{t+\frac{1}{e}}$,即a=-$\frac{2}{t+\frac{1}{e}}$,
∴$\frac{t}{a}$=-$\frac{{t}^{2}}{2}$-$\frac{t}{2e}$,
令g(t)=-$\frac{{t}^{2}}{2}$-$\frac{t}{2e}$,則g(t)在(0,$\frac{1}{e}$)上單調(diào)遞減,
∴-$\frac{1}{{e}^{2}}$<g(t)<0.
故答案為:$(-\frac{1}{e^2},0)$.
點(diǎn)評(píng) 本題考查了方程的根的個(gè)數(shù)與函數(shù)圖象的關(guān)系,函數(shù)值域的求法,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com