3.已知a、b、c為實(shí)常數(shù),數(shù)列{xn}的通項(xiàng)xn=an2+bn+c,n∈N*,則“存在k∈N*,使得x100+k、x200+k、x300+k成等差數(shù)列”的一個(gè)必要條件是( 。
A.a≥0B.b≤0C.c=0D.a-2b+c=0

分析 由x100+k,x200+k,x300+k成等差數(shù)列,可得:2x200+k=x100+kx300+k,代入化簡(jiǎn)即可得出.

解答 解:存在k∈N*,使得x100+k、x200+k、x300+k成等差數(shù)列,可得:2[a(200+k)2+b(200+k)+c]=a(100+k)2+b(100+k)+c+a(300+k)2+b(300+k)+c,化為:a=0.
∴使得x100+k,x200+k,x300+k成等差數(shù)列的必要條件是a≥0.
故選:A.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若集合A={x|x<5,x∈N},B={x|(x-2)(x-7)≤0},集合M=A∩B,則M的子集個(gè)數(shù)為( 。
A.4B.6C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=ex+$\frac{a}{{e}^{x}}$(a∈R)是定義域?yàn)镽的奇函數(shù),其中e是自然對(duì)數(shù)的底數(shù).
(1)求實(shí)數(shù)a的值;
(2)若存在x∈(0,+∞),使不等式f(x2+x)+f(2-tx)<0成立,求實(shí)數(shù)t的取值范圍;
(3)若函數(shù)y=e2x+$\frac{1}{{e}^{2x}}$-2mf(x)在(m,+∞)上不存在最值,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=cos2x+$\sqrt{3}$sinxcosx(x∈R)
(1)求函數(shù)f(x)的最小正周期;
(2)當(dāng)函數(shù)f(x)取得最大值時(shí),求自變量x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在△ABC中,D是邊BC的中點(diǎn),|$\overrightarrow{AC}$|=3,|$\overrightarrow{AB}$|=2,則$\overrightarrow{AD}$•$\overrightarrow{BC}$=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知復(fù)數(shù)z=(2a+i)(1-bi)的實(shí)部為2,其中a,b為正實(shí)數(shù),則4a+($\frac{1}{2}$)1-b的最小值為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知三棱錐P-ABC,PA=BC=5,PB=AC=$\sqrt{34}$,PC=AB=$\sqrt{41}$,則此三棱錐的體積是160.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知:x2-6x-1=0,則x3-$\frac{1}{{x}^{3}}$=234.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足S4=24,S7=63.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=2an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案