2.在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,前n項(xiàng)和為Sn,若S4=11,S8=187,則公比q的值是2.

分析 由題意可得q>0且q≠1,由求和公式寫出已知兩式相比解方程可得.

解答 解:∵在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,公比q>0,
又由S4=11,S8=187可得q≠1,
故由求和公式可得S4=$\frac{{a}_{1}(1-{q}^{4})}{1-q}$=11,S8=$\frac{{a}_{1}(1-{q}^{8})}{1-q}$=187,
兩式相比可得$\frac{1-{q}^{8}}{1-{q}^{4}}$=1+q4=$\frac{187}{11}$=17,解得q=2
故答案為:2

點(diǎn)評(píng) 本題考查等比數(shù)列的求和公式,整體法是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}的前n項(xiàng)和為Sn,且3Sn+an-3=0,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=$\frac{1}{2}{log_2}({1-{S_{n+1}}})$,求Tn=$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}$,求使Tn≥$\frac{504}{1009}$成立的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.由曲線y=$\sqrt{x}$,直線y=x所圍成的封閉曲線的面積是( 。
A.$\frac{1}{6}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點(diǎn)(0,1),且圓x2+y2=a2被直線x-y-$\sqrt{2}$=0截得的弦長(zhǎng)為2
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知k≠0,動(dòng)直線y=k(x-1)與橢圓C的兩個(gè)交點(diǎn)分別為A,B,問:在x軸上是否存在定點(diǎn)M,使得$\overrightarrow{MA}$$•\overrightarrow{MB}$為定值?若存在,試求出點(diǎn)M的坐標(biāo)和定值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.焦點(diǎn)在x軸的橢圓,順次連接橢圓的短軸頂點(diǎn)和焦點(diǎn)形成一邊長(zhǎng)為$\sqrt{2}$的正方形,求:
(1)橢圓的標(biāo)準(zhǔn)方程;
(2)橢圓的焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)和離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知復(fù)數(shù)z=$\frac{{a}^{2}+a-6}{a+3}$+(a2-3a-10)i(a∈R)滿足zi>0或zi<0,求a的值(或范圍).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.F是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn).過點(diǎn)F向C的-條漸近線引垂線,垂足為A,交另一條漸近線于點(diǎn)B,若3$\overrightarrow{AF}$=$\overrightarrow{FB}$,則C的心離心率是( 。
A.$\sqrt{2}$B.2C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{14}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=2,($\overrightarrow{a}$+$\overrightarrow$)$•\overrightarrow$=6,則$\overrightarrow{a}$,$\overrightarrow$的夾角為(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.將函數(shù)y=sinx的圖象向右平移$\frac{π}{6}$個(gè)單位,再將所得函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),得到函數(shù)y=sin(ωx+φ),(ω>0,|φ|<$\frac{π}{2}$)的圖象,則( 。
A.ω=2,φ=-$\frac{π}{6}$B.ω=2,φ=-$\frac{π}{3}$C.ω=$\frac{1}{2}$,φ=-$\frac{π}{6}$D.ω=$\frac{1}{2}$,φ=-$\frac{π}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案