10.已知函數(shù)f(x)=$\frac{{x}^{2}+2x+a}{x}$,若對(duì)于任意x∈[1,+∞),f(x)>0恒成立,則a的取值范圍是( 。
A.[-3,3)B.[-3,+∞)C.(-3,1]D.[1,+∞)

分析 問(wèn)題轉(zhuǎn)化為a≥-x2-2x,(x≥1),根據(jù)二次函數(shù)的性質(zhì),求出a的范圍即可.

解答 解:若對(duì)于任意x∈[1,+∞),f(x)>0恒成立,
即a≥-x2-2x,(x≥1),
而y=-x2-2x=-(x+1)2+1≤-3,
故a≥-3,
故選:B.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問(wèn)題,考查二次函數(shù)的性質(zhì)以及函數(shù)恒成立問(wèn)題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.書架上有2本數(shù)學(xué)書,2本物理書,從中任意取出2本,則取出的兩本書都是數(shù)學(xué)書的概率為$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知△ABC三個(gè)內(nèi)角所對(duì)的邊分別為a,b,c,且2a=b,∠C=60°,則∠B等于$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.某小型服裝廠生產(chǎn)一種風(fēng)衣,日銷售量x(件)與單價(jià)P(元)之間的關(guān)系為P=160-2x,生產(chǎn)x件所需成本為C(元),其中C=500+30x元,若要求每天獲利不少于1300元,則日銷量x的取值范圍是(  )
A.20≤x≤30B.20≤x≤45C.15≤x≤30D.15≤x≤45

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,某城市小區(qū)有一個(gè)矩形休閑廣場(chǎng),AB=20米,廣場(chǎng)的一角是半徑為16米的扇形BCE綠化區(qū)域,為了使小區(qū)居民能夠更好的在廣場(chǎng)休閑放松,現(xiàn)決定在廣場(chǎng)上安置兩排休閑椅,其中一排是穿越廣場(chǎng)的雙人靠背直排椅MN(寬度不計(jì)),點(diǎn)M在線段AD上,并且與曲線CE相切;另一排為單人弧形椅沿曲線CN(寬度不計(jì))擺放.已知雙人靠背直排椅的造價(jià)每米為2a元,單人弧形椅的造價(jià)每米為a元,記銳角∠NBE=θ,總造價(jià)為W元.
(1)試將W表示為θ的函數(shù)W(θ),并寫出cosθ的取值范圍;
(2)如何選取點(diǎn)M的位置,能使總造價(jià)W最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在集合D上都有意義的兩個(gè)函數(shù)f(x)與g(x),如果對(duì)任意x∈D,都有|f(x)-g(x)|≤1,則稱f(x)與g(x)在集合D上是緣分函數(shù),集合D稱為緣分區(qū)域.若f(x)=x2+3x+2與g(x)=2x+3在區(qū)間[a,b]上是緣分函數(shù),則緣分區(qū)域D是( 。
A.[-2,-1]∪[1,2]B.[-2,-1]∪[0,1]C.[-2,0]∪[1,2]D.[-1,0]∪[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知一個(gè)幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖都是底邊長(zhǎng)為6,腰長(zhǎng)為10的等腰三角形,俯視圖是半徑為3的圓,則這個(gè)幾何體的表面積是( 。
A.69πB.24πC.30πD.39π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.計(jì)算i+i3=0(i為虛數(shù)單位).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.給出下列命題:①存在實(shí)數(shù)α,使sinαcosα=1;②函數(shù)$y=sin(\frac{3π}{2}+x)$是偶函數(shù);③直線$x=\frac{π}{8}$是函數(shù)$y=sin(\frac{5π}{4}+2x)$的一條對(duì)稱軸;④若α,β是第一象限的角,且α>β,則sinα>sinβ.⑤對(duì)于向量$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$,若$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow$∥$\overrightarrow{c}$,則$\overrightarrow{a}$∥$\overrightarrow{c}$;其中正確命題的序號(hào)是②③.

查看答案和解析>>

同步練習(xí)冊(cè)答案