如圖是挑戰(zhàn)主持人大賽上,七位評委為某選手打出的分數(shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)和方差分別為(  )
A、84,4.84
B、84,1.6
C、85,1.6
D、85,4
考點:莖葉圖
專題:計算題,概率與統(tǒng)計
分析:根據(jù)莖葉圖中的數(shù)據(jù),結(jié)合題意,求出平均數(shù)與方差即可.
解答: 解:根據(jù)莖葉圖中的數(shù)據(jù),得;
去掉一個最高分93和一個最低分79后,
所剩數(shù)據(jù)的平均數(shù)是
.
x
=
1
5
×(84+84+86+84+87)=85
方差是s2=
1
5
×[(-1)2+(-1)2+12+(-1)2+22]=1.6.
故選:C.
點評:本題考查了莖葉圖的應用問題,也考查了平均數(shù)與方差的計算問題,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若關于x的一元二次方程x2-4x+k-1=0的兩個實數(shù)根為x1,x2,且滿足x1=2x2,試求出方程的兩個實數(shù)根及k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P是橢圓上一定點,F(xiàn)1、F2是橢圓的兩個焦點,若∠PF1F2=60°,PF2=
3
PF1,則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正四面體ABCD的頂點A,B,C分別在兩兩垂直的三條射線Ox,Oy,Oz上,則在下列命題中,錯誤的為( 。
A、O-ABC是正三棱錐
B、直線AD與OB所成的角是45°
C、直線OB∥平面ACD
D、二面角D-OB-A為45°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)的定義域為R,若對任意不等實數(shù)x1、x2滿足
f(x1)-f(x2)
x1-x2
<0,且對任意x、y∈R,f(x2-2x)+f(2y-y2)≤0恒成立,又f (x-1)的圖象關于(1,0)對稱.則當1≤x≤4,
y
x
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知y=f(x)是偶函數(shù),當x>0時,f(x)=x+
4
x
,且x∈[-3,-1]時n≤f(x)≤m恒成立,則m-n的最小值是( 。
A、
1
3
B、
2
3
C、1
D、
4
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正方體AC1中,E,F(xiàn)分別是線段A1B1,B1C1上的不與端點重合的動點,如果A1E=B1F,有下列四個結(jié)論:
①EF與AA1所成的角為90°;②EF∥AC;③EF與AC異面;④EF∥面ABCD,其中一定正確的有
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在一個45°的二面角的一個平面內(nèi)有一條直線與二面角的棱成45°角,則此直線與二面角的另一個面所成的角為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

變量x、y滿足線性約束條件
2x+y≤2
x+2y≤2
x≥0
y≥0
,則目標函數(shù)z=x+y 的最大值為
 

查看答案和解析>>

同步練習冊答案