不等式|x-2|≤m的解集為{x|-4≤x≤8},又已知a,b,c∈R,且a+2b+3c=m,求a2+4b2+9c2的最小值.
考點:二維形式的柯西不等式,絕對值不等式的解法
專題:選作題,不等式
分析:根據(jù)不等式|x-2|≤m的解集為{x|-4≤x≤8},求出m,利用柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)(a2+4b2+9c2)=3(a2+4b2+9c2),化簡得a2+4b2+9c2≥12,由此可得a2+4b2+9c2的最小值為12.
解答: 解:不等式|x-2|≤m 的解集為{x|2-m≤x≤2+m},
又不等式|x-2|≤m的解集為{x|-4≤x≤8},所以m=6,
可知a+2b+3c=6,根據(jù)柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)[a2+(2b)2+(3c)2]
化簡得62≤3(a2+4b2+9c2),即36≤3(a2+4b2+9c2
∴a2+4b2+9c2≥12,
當且僅當a:2b:3c=1:1:1時,即a=2,b=1,c=
2
3
時等號成立
由此可得:當且僅當a=2,b=1,c=
2
3
時,a2+4b2+9c2的最小值為12
點評:本題給出等式a+2b+3c=m,求式子a2+4b2+9c2的最小值.著重考查了運用柯西不等式求最值與柯西不等式的等號成立的條件等知識,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)滿足f(x)=1+f(2)•log2x2,則f(4)=(  )
A、-3B、-2C、0D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
3
2
,左頂點M到直線
x
a
+
y
b
=1的距離d=
4
5
5
,O為坐標原點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l與橢圓C相交于A,B兩點,若以AB為直徑的圓經(jīng)過坐標原點,證明:點O到直線AB的距離為定值;
(Ⅲ)在(Ⅱ)的條件下,試求△AOB的面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知圓C1:(x-3)2+(y-4)2=1,圓C2:(x+1)2+y2=1.
(1)求過點A(4,6)的圓C1的切線l的方程;
(2)已知圓C3:(x+1)2+y2=9,動圓M半徑為1,圓心M在圓C3上移動,過圓M上任意一點P作圓C2的兩條切線PE,PF,切點為E,F(xiàn),求
C1E
C1F
的取值范圍;
(3)若動圓Q同時平分圓C1的周長、圓C2的周長,求圓心Q的軌跡方程,并判斷
動圓Q是否經(jīng)過定點?若經(jīng)過,求出定點的坐標;若不經(jīng)過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列方程的曲線不關(guān)于x軸對稱的是( 。
A、x2-x+y2=1
B、x2y+xy2=1
C、2x2-y2=1
D、x+y2=-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

四棱錐P-ABCD中,底面ABCD為菱形,且∠DAB=60°,點P為平面ABCD所在平面外的一點,若△PAD為等邊三角形,求證:PB⊥AD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓臺的兩底面半徑分別是5cm和10cm,高為8cm,有一個過圓臺兩母線的截面沮上、下底面中心到截面與兩底面的交線的距離分別為3cm和6cm,求截面面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求f(x)=
3
sinx+cosx對稱軸方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若命題P(n)對n=3成立,且由P(k)成立可以推證P(k+2)也成立,則一定有(  )
A、P(n)對所有正整數(shù)都成立
B、P(n)對所有正偶數(shù)都成立
C、P(n)對所有正奇數(shù)都成立
D、P(n)對所有大于等于3的正奇數(shù)都成立

查看答案和解析>>

同步練習冊答案