【題目】已知一元二次函數的最大值為,其圖象的對稱軸為,且與軸兩個交點的橫坐標的平方和為.
(1)求該一元二次函數;
(2)要將該函數圖象的頂點平移到原點,請說出平移的方式.
科目:高中數學 來源: 題型:
【題目】在極坐標系中,點 P的極坐標是 ,曲線 C的極坐標方程為 .以極點為坐標原點,極軸為 x軸的正半軸建立平面直角坐標系,斜率為﹣1的直線 l經過點P.
(1)寫出直線 l的參數方程和曲線 C的直角坐標方程;
(2)若直線 l和曲線C相交于兩點A,B,求 的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市教育部門為了解全市高三學生的身高發(fā)育情況,從本市全體高三學生中隨機抽取了100人的身高數據進行統計分析.經數據處理后,得到了如下圖1所示的頻事分布直方圖,并發(fā)現這100名學生中,身高不低于1.69米的學生只有16名,其身高莖葉圖如下圖2所示,用樣本的身高頻率估計該市高一學生的身高概率.
(1)求該市高三學生身高高于1.70米的概率,并求圖1中、、的值.
(2)若從該市高三學生中隨機選取3名學生,記為身高在的學生人數,求的分布列和數學期望;
(3)若變量滿足且,則稱變量滿足近似于正態(tài)分布的概率分布.如果該市高三學生的身高滿足近似于正態(tài)分布的概率分布,則認為該市高三學生的身高發(fā)育總體是正常的.試判斷該市高三學生的身高發(fā)育總體是否正常,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于命題:存在一個常數,使得不等式對任意正數,恒成立.
(1)試給出這個常數的值;
(2)在(1)所得結論的條件下證明命題;
(3)對于上述命題,某同學正確地猜想了命題:“存在一個常數,使得不等式對任意正數,,恒成立.”觀察命題與命題的規(guī)律,請猜想與正數,,,相關的命題.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某射手射擊1次,擊中目標的概率是0.9,他連續(xù)射擊4次,且他各次射擊是否擊中目標相互之間沒有影響.有下列結論:
①他第3次擊中目標的概率是0.9; ②他恰好擊中目標3次的概率是0.93×0.1;
③他至少擊中目標1次的概率是1-0.14 ④他恰好有連續(xù)2次擊中目標的概率為3×0.93×0.1
其中正確結論的序號是______
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一家面包房根據以往某種面包的銷售記錄,繪制了日銷售量的頻率分布直方圖,如圖231所示.
圖231
將日銷售量落入各組的頻率視為概率,并假設每天的銷售量相互獨立.
(1)求在未來連續(xù)3天里,有連續(xù)2天的日銷售量都不低于100個且另1天的日銷售量低于50個的概率;
(2)用X表示在未來3天里日銷售量不低于100個的天數,求隨機變量X的分布列,期望E(X)及方差D(X).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設拋物線C:y2=2px(p>0)的焦點為F,點M在C上,|MF|=5,若以MF為直徑的圓過點(0,2),則C的方程為( )
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=xlnx﹣ax,g(x)=﹣x2﹣2.
(1)對一切x∈(0,+∞),f(x)≥g(x)恒成立,求實數a的取值范圍;
(2)當a=﹣1時,求函數f(x)在區(qū)間[m,m+3](m>0)上的最值;
(3)證明:對一切x∈(0,+∞),都有 成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,.
(1)若在處的切線與在處的切線平行,求實數的值;
(2)若,討論的單調性;
(3)在(2)的條件下,若,求證:函數只有一個零點,且.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com