【題目】已知函數(shù),.
(1)若在處的切線與在處的切線平行,求實(shí)數(shù)的值;
(2)若,討論的單調(diào)性;
(3)在(2)的條件下,若,求證:函數(shù)只有一個零點(diǎn),且.
【答案】(1) (2)見解析(3)見解析
【解析】分析:(1)先求一階導(dǎo)函數(shù),,用點(diǎn)斜式寫出切線方程
(2)先求一階導(dǎo)函數(shù)的根,求解或的解集,判斷單調(diào)性。
(3)根據(jù)(2)的結(jié)論,求出極值畫出函數(shù)的示意圖,分析函數(shù)只有一個零點(diǎn)的等價(jià)條件是極小值大于零,函數(shù)在是減函數(shù),故必然有一個零點(diǎn)。
詳解:(1)因?yàn)?/span>,所以;又。
由題意得,解得
(2),其定義域?yàn)?/span>,
又,令或。
①當(dāng)即時,函數(shù)與隨的變化情況如下:
當(dāng)時,,當(dāng)時,。
所以函數(shù)在單調(diào)遞增,在和單調(diào)遞減
②當(dāng)即時,,
所以,函數(shù)在上單調(diào)遞減
③當(dāng)即時,函數(shù)與隨的變化情況如下:
當(dāng)時,,當(dāng)時,。
所以函數(shù)在單調(diào)遞增在和 上單調(diào)遞減
(3)證明:當(dāng)時,
由①知,的極小值為,極大值為.
因?yàn)?/span>
且又由函數(shù)在是減函數(shù),可得至多有一個零點(diǎn)
又因?yàn)?/span>,
所以 函數(shù)只有一個零點(diǎn), 且.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次函數(shù)的最大值為,其圖象的對稱軸為,且與軸兩個交點(diǎn)的橫坐標(biāo)的平方和為.
(1)求該一元二次函數(shù);
(2)要將該函數(shù)圖象的頂點(diǎn)平移到原點(diǎn),請說出平移的方式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間和極值;
(2)若對于任意,都有成立,求實(shí)數(shù)的取值范圍;
(3)若,且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】質(zhì)檢部門對某工廠甲、乙兩個車間生產(chǎn)的個零件質(zhì)量進(jìn)行檢測.甲、乙兩個車間的零件質(zhì)量(單位:克)分布的莖葉圖如圖所示.零件質(zhì)量不超過克的為合格.
(1)質(zhì)檢部門從甲車間個零件中隨機(jī)抽取件進(jìn)行檢測,若至少件合格,檢測即可通過,若至少件合格,檢測即為良好,求甲車間在這次檢測通過的條件下,獲得檢測良好的概率;
(2)若從甲、乙兩車間個零件中隨機(jī)抽取個零件,用表示乙車間的零件個數(shù),求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)說偉大的阿基米德逝世后,敵軍將領(lǐng)馬塞拉斯給他建了一塊墓碑,在墓碑上刻了一個如圖所示的圖案,圖案中球的直徑、圓柱底面的直徑和圓柱的高相等,圓錐的頂點(diǎn)為圓柱上底面的圓心,圓錐的底面是圓柱的下底面.
(1)試計(jì)算出圖案中球與圓柱的體積比;
(2)假設(shè)球半徑.試計(jì)算出圖案中圓錐的體積和表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】抽樣統(tǒng)計(jì)甲、乙兩位射擊運(yùn)動員的5次訓(xùn)練成績(單位:環(huán)),結(jié)果如下:
運(yùn)動員 | 第一次 | 第二次 | 第三次 | 第四次 | 第五次 |
甲 | 87 | 91 | 90 | 89 | 93 |
乙 | 89 | 90 | 91 | 88 | 92 |
則成績較為穩(wěn)定(方差較。┑哪俏贿\(yùn)動員成績的方差為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com