3.已知點(diǎn)M是拋物線C:y2=2px(p>0)上一點(diǎn),F(xiàn)為C的焦點(diǎn),MF的中點(diǎn)坐標(biāo)是(2,2),則p的值為(  )
A.1B.2C.3D.4

分析 求得F($\frac{p}{2}$,0),M($\frac{{y}_{1}^{2}}{2p}$,y1),利用中點(diǎn)坐標(biāo)公式,列方程,即可求得p的值.

解答 解:拋物線C:y2=2px的焦點(diǎn)F($\frac{p}{2}$,0),設(shè)M($\frac{{y}_{1}^{2}}{2p}$,y1),
由中點(diǎn)坐標(biāo)公式可知:$\frac{p}{2}$+$\frac{{y}_{1}^{2}}{2p}$=2×2,y1=2×2,
解得:p=4,
p的值為4,
故選D.

點(diǎn)評(píng) 本題考查拋物線的方程,中點(diǎn)坐標(biāo)公式,考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知向量$\vec a$,$\overrightarrow$的夾角為$\frac{π}{3}$,且|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,則向量$\overrightarrow{a}$與向量$\overrightarrow{a}$+2$\overrightarrow$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)F1是橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左焦點(diǎn),M是C上一點(diǎn),且MF1與x軸垂直,若$|{M{F_1}}|=\frac{3}{2}$,橢圓的離心率為$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)以橢圓C的左頂點(diǎn)A為Rt△ABD的直角頂點(diǎn),邊AB,AD與橢圓C交于B,D兩點(diǎn),求△ABD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.為吸引顧客,某公司在商場(chǎng)舉辦電子游戲活動(dòng).對(duì)于A,B兩種游戲,每種游戲玩一次均會(huì)出現(xiàn)兩種結(jié)果,而且每次游戲的結(jié)果相互獨(dú)立,具體規(guī)則如下:玩一次游戲A,若綠燈閃亮,獲得50分,若綠燈不閃亮,則扣除10分,綠燈閃亮的概率為$\frac{1}{2}$;玩一次游戲B,若出現(xiàn)音樂,獲得60分,若沒有出現(xiàn)音樂,則扣除20分(即獲得-20分),出現(xiàn)音樂的概率為$\frac{2}{5}$.玩多次游戲后累計(jì)積分達(dá)到130分可以兌換獎(jiǎng)品.
(1)記X為玩游戲A和B各一次所得的總分,求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(2)記某人玩5次游戲B,求該人能兌換獎(jiǎng)品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在四面體ABCD中,平面ABC⊥平面BCD,DC⊥BC,$AB=\sqrt{3}$,BC=2,AC=1.
(1)求證:AB⊥AD;
(2)設(shè)E是BD的中點(diǎn),若直線CE與平面ACD的夾角為30°,求四面體ABCD外接球的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$+ax+2lnx,g(x)=$\frac{1}{2}{x^2}$+kx+(2-x)lnx-k,k∈Z.
(1)當(dāng)a=-3時(shí),求f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=1時(shí),若對(duì)任意x>1,都有g(shù)(x)<f(x)成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的離心率為$\frac{5}{3}$,則其漸近線方程為(  )
A.2x±y=0B.x±2y=0C.3x±4y=0D.4x±3y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)$f(x)=ax-\frac{x}-2lnx$,對(duì)任意實(shí)數(shù)x>0,都有$f(x)=-f(\frac{1}{x})$成立.
(Ⅰ)對(duì)任意實(shí)數(shù)x≥1,函數(shù)f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)求證:$\frac{1}{2^2}+\frac{1}{3^2}+…+\frac{1}{n^2}>2ln\frac{2n}{n+1}-\frac{3}{4}$,n≥2,n∈N+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.從橢圓$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$(a>b>0)上的動(dòng)點(diǎn)M作圓${x^2}+{y^2}=\frac{b^2}{2}$的兩條切線,切點(diǎn)為P和Q,直線PQ與x軸和y軸的交點(diǎn)分別為E和F,則△EOF面積的最小值是$\frac{b^3}{4a}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案