【題目】已知正四面體的表面積為,為棱的中點,球為該正四面體的外接球,則過點的平面被球所截得的截面面積的最小值為( )
A.B.C.D.
【答案】B
【解析】
本題首先可以將正四面體放入正方體中,然后借助正方體的性質(zhì)得出外接球的球心,通過正四面體的表面積為即可計算出長,從而求得外接球的半徑,利用截面圓的性質(zhì)求得最小截面圓的半徑徑,問題得解。
如圖所示,
將正四面體放入正方體中,則正方體的中心即為其外接球的球心,
因為正四面體的表面積為,
所以,
因為是正三角形,所以,,
設正方體的邊長為,則:,解得:
所以正四面體的外接球直徑為,
設過點的截面圓半徑為,球心到截面圓的距離為,正四面體的外接球半徑為,
由截面圓的性質(zhì)可得:
當最大時,最小,此時對應截面圓的面積最小.
又,所以的最大值為,此時最小為
所以過點的最小截面圓的面積為,故選B。
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,圓.以極點為原點,極軸為軸正半軸建立直角坐標系,直線經(jīng)過點且傾斜角為.
求圓的直角坐標方程和直線的參數(shù)方程;
已知直線與圓交與,,滿足為的中點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)求曲線的普通方程及直線的直角坐標方程;
(2)已知點為曲線上的動點,當點到直線的距離最大時,求點的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在矩形紙片中,,,在線段上取一點,沿著過點的直線將矩形右下角折起,使得右下角頂點恰好落在矩形的左邊邊上.設折痕所在直線與交于點,記折痕的長度為,翻折角為.
(1)探求與的函數(shù)關(guān)系,推導出用表示的函數(shù)表達式;
(2)設的長為,求的取值范圍;
(3)確定點在何處時,翻折后重疊部分的圖形面積最。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在軸上,它的一個頂點恰好是拋物線的焦點,離心率等于.
(1)求橢圓的方程;
(2)過橢圓的右焦點作直線交橢圓于、兩點,交軸于點,若,,求證:為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com