【題目】如圖,在矩形紙片中,,在線段上取一點(diǎn),沿著過(guò)點(diǎn)的直線將矩形右下角折起,使得右下角頂點(diǎn)恰好落在矩形的左邊邊上.設(shè)折痕所在直線與交于點(diǎn),記折痕的長(zhǎng)度為,翻折角

(1)探求的函數(shù)關(guān)系,推導(dǎo)出用表示的函數(shù)表達(dá)式;

(2)設(shè)的長(zhǎng)為,求的取值范圍;

(3)確定點(diǎn)在何處時(shí),翻折后重疊部分的圖形面積最。

【答案】(1);(2);(3)當(dāng)時(shí),翻折后重疊部分的圖形面積最小

【解析】

(1)由圖可知的函數(shù)關(guān)系式為 =,再求函數(shù)定義域的范圍即可;

(2)由三角函數(shù)的性質(zhì)求函數(shù)在區(qū)間上的值域即可;

(3)由均值不等式求函數(shù)的最值,由取等的條件求出的值即可.

解:(1)設(shè)頂點(diǎn)翻折到邊上的點(diǎn)為,由題意可得,

,因?yàn)?/span>

所以=,

的函數(shù)關(guān)系式為 =,

由題意有,首先利用,可知

解得,所以,

又由,可知,即,

,

的函數(shù)關(guān)系式為 =;

(2),

當(dāng),,

所以,

的取值范圍為;

(3) ,

(當(dāng)且僅當(dāng)=時(shí)取等號(hào),

故當(dāng)時(shí),取最小值

時(shí),取最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦距為2,過(guò)點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)橢圓的右焦點(diǎn)為F,定點(diǎn),過(guò)點(diǎn)F且斜率不為零的直線l與橢圓交于A,B兩點(diǎn),以線段AP為直徑的圓與直線的另一個(gè)交點(diǎn)為Q,證明:直線BQ恒過(guò)一定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(k+)lnx+,k∈[4,+∞),曲線y=f(x)上總存在兩點(diǎn)M(x1,y1),N(x2,y2),使曲線y=f(x)在M,N兩點(diǎn)處的切線互相平行,則x1+x2的取值范圍為

A. ,+∞) B. ,+∞) C. [,+∞) D. [,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正四面體的表面積為,為棱的中點(diǎn),球為該正四面體的外接球,則過(guò)點(diǎn)的平面被球所截得的截面面積的最小值為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(k+)lnx+,k∈[4,+∞),曲線y=f(x)上總存在兩點(diǎn)M(x1,y1),N(x2,y2),使曲線y=f(x)在M,N兩點(diǎn)處的切線互相平行,則x1+x2的取值范圍為

A. ,+∞) B. ,+∞) C. [,+∞) D. [,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,.

(1)求函數(shù)的極值;

(2)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)取值范圍;

(3)若當(dāng)時(shí),恒成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)在以為直徑的上運(yùn)動(dòng),平面,且,點(diǎn)分別是的中點(diǎn).

(1)求證:;

(2)若,求點(diǎn)平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某省高考改革實(shí)施方案指出:該省高考考生總成績(jī)將由語(yǔ)文、數(shù)學(xué)、外語(yǔ)3門(mén)統(tǒng)一高考成績(jī)和學(xué)生自主選擇的學(xué)業(yè)水平等級(jí)性考試科目共同構(gòu)成.該省教育廳為了解正就讀高中的學(xué)生家長(zhǎng)對(duì)高考改革方案所持的贊成態(tài)度,隨機(jī)從中抽取了100名城鄉(xiāng)家長(zhǎng)作為樣本進(jìn)行調(diào)查,調(diào)查結(jié)果顯示樣本中有25人持不贊成意見(jiàn).下面是根據(jù)樣本的調(diào)查結(jié)果繪制的等高條形圖.

(1)根據(jù)已知條件與等高條形圖完成下面的2×2列聯(lián)表,并判斷我們能否有95%的把握認(rèn)為“贊成高考改革方案與城鄉(xiāng)戶口有關(guān)”?

(2)利用分層抽樣從持“不贊成”意見(jiàn)家長(zhǎng)中抽取5名參加學(xué)校交流活動(dòng),從中選派2名家長(zhǎng)發(fā)言,求恰好有1名城鎮(zhèn)居民的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙、丁四人進(jìn)行一項(xiàng)益智游戲,方法如下:第一步:先由四人看著平面直角坐標(biāo)系中方格內(nèi)的16個(gè)棋子(如圖所示),甲從中記下某個(gè)棋子的坐標(biāo);第二步:甲分別告訴其他三人:告訴乙棋子的橫坐標(biāo).告訴丙棋子的縱坐標(biāo),告訴丁棋子的橫坐標(biāo)與縱坐標(biāo)相等;第三步:由乙、丙、丁依次回答.對(duì)話如下:“乙先說(shuō)我無(wú)法確定.丙接著說(shuō)我也無(wú)法確定.最后丁說(shuō)我知道”.則甲記下的棋子的坐標(biāo)為_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案