10.在研究吸煙與患肺癌的關(guān)系中,通過收集數(shù)據(jù),整理、分析數(shù)據(jù)得出“吸煙與患肺癌有關(guān)”的結(jié)論,并有99%的把握認(rèn)為這個(gè)結(jié)論是成立的,下列說法中正確的是( 。
A.吸煙人患肺癌的概率為99%
B.認(rèn)為“吸煙與患肺癌有關(guān)”犯錯(cuò)誤的概率不超過1%
C.吸煙的人一定會(huì)患肺癌
D.100個(gè)吸煙人大約有99個(gè)人患有肺癌

分析 “吸煙與患肺癌有關(guān)”的結(jié)論,并且在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為這個(gè)結(jié)論是成立的,表示有99%的把握認(rèn)為這個(gè)結(jié)論成立,與多少個(gè)人患肺癌沒有關(guān)系,得到結(jié)論.

解答 解:∵“吸煙與患肺癌有關(guān)”的結(jié)論,并且在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為這個(gè)結(jié)論是成立的,
表示有99%的把握認(rèn)為這個(gè)結(jié)論成立,
與多少個(gè)人患肺癌沒有關(guān)系,
只有B選項(xiàng)正確,
故選:B.

點(diǎn)評(píng) 本題考查獨(dú)立性檢驗(yàn)的應(yīng)用,是一個(gè)基礎(chǔ)題,解題的關(guān)鍵是正確理解有多大把握認(rèn)為這件事正確,實(shí)際上是對(duì)概率的理解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標(biāo)系xOy中,點(diǎn)A(-1,-2)、B(2,3)、C(-2,-1).
(1)求|$\overrightarrow{AB}+\overrightarrow{AC}}$|;
(2)設(shè)實(shí)數(shù)t滿足($\overrightarrow{AB}$-t$\overrightarrow{OC}$)•$\overrightarrow{OC}$=0,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.等比數(shù)列{an},Sn是{an}的前n項(xiàng)和.若a1=1,a4=8,則S6=63.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}滿足a1=0,an+1=an+2$\sqrt{{a}_{n}+1}$+1
(1)求證數(shù)列{$\sqrt{{a}_{n}+1}$}是等差數(shù)列,并求出an的通項(xiàng)公式;
(2)若bn=$\frac{{a}_{n}•{2}^{n}}{n-1}$,求數(shù)列的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0).若雙曲線上存在點(diǎn)P,使PF1=2PF2,則該雙曲線的離心率的取值范圍是(1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)若α,β為銳角,且cos(α+β)=$\frac{12}{13}$,cos(2α+β)=$\frac{3}{5}$,求cosα的值
(2)求函數(shù)f(x)=lg(2cosx-1)+$\sqrt{49-{x}^{2}}$的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如果函數(shù)f(x)=ax(ax-3a2-1)(a>0且a≠1)在區(qū)間(-∞,0]上是減函數(shù),那么實(shí)數(shù)a的取值范圍是( 。
A.$(0,\frac{{\sqrt{3}}}{3}]$B.$(0,\frac{{\sqrt{3}}}{3}]∪$(1,+∞)C.$[\frac{{\sqrt{3}}}{3},1)$D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.有五個(gè)命題如下:
(1)集合N*中最小元素是1;
(2)若a∈N*,b∈N*,則(a-b)∈N*
(3)空集是任何集合的真子集;
(4)區(qū)間[2,4]是函數(shù)f(x)=x2-2x+3的一個(gè)單調(diào)增區(qū)間;
(5)若集合A={x|1<x<3},集合B={t|1<t<3},則A≠B;
其中正確的命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,AB⊥AD,AB∥CD,CD=2AB=2AD=2,PB⊥底面ABCD,E是PC上的點(diǎn).
(1)求證:BD⊥平面PBC;
(2)設(shè)PB>1,若E是PC的中點(diǎn),且直線PD與平面EDB所成角的正弦值為$\frac{{\sqrt{2}}}{3}$,求二面角P-BD-E的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案