精英家教網 > 高中數學 > 題目詳情
已知集合A={x|0<x<2},B={x|x-1>0},則A∩B=( 。
A、(1,2)B、(0,1)
C、(0,+∞)D、∅
考點:交集及其運算
專題:集合
分析:求出B中不等式的解集確定出B,找出A與B的交集即可.
解答: 解:由B中不等式解得:x>1,即B=(1,+∞),
∵A=(0,2),
∴A∩B=(1,2),
故選:A.
點評:此題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設等差數列{an}的前n項和為Sn,若a1=1,S5=15,則a6等于( 。
A、8B、7C、6D、5

查看答案和解析>>

科目:高中數學 來源: 題型:

已知冪函數f(x)=xα的圖象過點(2,4),那么這個冪函數的解析式是(  )
A、y=x
1
2
B、y=x-
1
2
C、y=x-2
D、y=x2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知全集為R,集合A={x|x2-2x>0},B={x|1<x<3},則A∩B=
 
;A∪B=
 
;CRA=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設集合A={x||x-1|<2},B={x|2x+1≥4},則A∩B=( 。
A、[0,2]
B、(1,3)
C、[1,3)
D、(1,4)

查看答案和解析>>

科目:高中數學 來源: 題型:

甲、乙兩名同學的乒乓球友誼比賽,實行三局兩勝制.已知每局比賽中,若甲先發(fā)球,則獲勝的概率為
2
3
,否則其獲勝的概率為
1
2

(Ⅰ)若在第一局比賽中采用擲硬幣的方式決定誰先發(fā)球,試求甲在此局獲勝的概率;
(Ⅱ)若第一局由乙先發(fā)球,以后每局由負方先發(fā)球.規(guī)定:本人發(fā)球本人勝一局記1分,對方發(fā)球本人勝一局記2分,不論誰發(fā)球負一局記0分,記ξ為比賽結束時甲的得分,求隨機變量ξ的分布列及數學期望Eξ.

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)已知雙曲線上兩點P1,P2的坐標分別為(3,-4
2
),(
9
4
,5)
,求雙曲線的標準方程
(2)求一條漸近線方程是3x+4y=0,一個焦點是(4,0)的雙曲線標準方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

設Sn為等比數列{an}的前n項和,27a2+a5=0,則
S4
S2
=( 。
A、10B、-5C、9D、-8

查看答案和解析>>

科目:高中數學 來源: 題型:

曲線x2-3y2=0與雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的四個交點與C的兩個虛軸頂點構成一個正六邊形,則雙曲線C的離心率為( 。
A、
15
3
B、
2
6
3
C、
3
D、
8
3

查看答案和解析>>

同步練習冊答案