16.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.已知2c=3b,sinA=2sinB,則$\frac{cosA}{cosB}$的值為-$\frac{2}{7}$.

分析 利用正弦定理得出三角形三邊的比例關(guān)系,利用余弦定理求出cosA,cosB得出比值.

解答 解:∵2c=3b,∴b:C=2:3.
∵sinA=2sinB,∴a=2b,
∴a:b;c=4:2:3.
設(shè)a=4,b=2,c=3,
則cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=-$\frac{1}{4}$,cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{7}{8}$.
∴$\frac{cosA}{cosB}$=-$\frac{1}{4}×\frac{8}{7}$=-$\frac{2}{7}$.
故答案為:$-\frac{2}{7}$.

點(diǎn)評(píng) 本題考查了正弦定理,余弦定理,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知a+2i=(b+i)•i(a,b∈R,其中i為虛數(shù)單位),則|a+bi|=( 。
A.3B.1C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.求證:$\frac{1+sinα-cosα}{1+sinα+cosα}$=$\frac{1-cosα}{sinα}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知某回歸分析中,模型A的殘差圖的帶狀區(qū)域?qū)挾缺饶P虰的殘差圖的帶狀區(qū)域?qū)挾日,則在該回歸分析中擬合精度較高的模型是模型A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知圓C1:(x+2)2+(y-3)2=1,圓C2:(x-3)2+(y-4)2=9,A,B分別是圓C1和圓C2上的動(dòng)點(diǎn),點(diǎn)P是y軸上的動(dòng)點(diǎn),則|PB|-|PA|的最大值為( 。
A.$\sqrt{2}$+4B.5$\sqrt{2}-4$C.$\sqrt{2}$D.$\sqrt{26}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在銳角△ABC中,角A,B,C的對(duì)邊分別是a,b,c,若a=$\sqrt{7}$,b=3,$\sqrt{7}$sinB+sinA=2$\sqrt{3}$.
(Ⅰ)求角A的大小;
(Ⅱ)求sin(2B+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,若△ABC的面積是$\frac{1}{2}$c2,則$\frac{{a}^{2}+^{2}+{c}^{2}}{ab}$的最大值為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知$\overrightarrow{a}$,$\overrightarrow$是任意的兩個(gè)向量,則下列關(guān)系式中不恒成立的是( 。
A.|$\overrightarrow{a}$|+|$\overrightarrow$|≥|$\overrightarrow{a}$-$\overrightarrow$|B.|$\overrightarrow{a}$•$\overrightarrow$|≤|$\overrightarrow{a}$|•|$\overrightarrow$|
C.($\overrightarrow{a}$-$\overrightarrow$)2=$\overrightarrow{a}$-2$\overrightarrow{a}$•$\overrightarrow$+$\overrightarrow$2D.($\overrightarrow{a}$-$\overrightarrow$)3=$\overrightarrow{a}$3-3$\overrightarrow{a}$2•$\overrightarrow$+3$\overrightarrow{a}$•$\overrightarrow$2-$\overrightarrow$3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知i為虛數(shù)單位,復(fù)數(shù)z滿足(1-i)z=2i2016,則復(fù)數(shù)z的虛部為( 。
A.-1B.1C.iD.-i

查看答案和解析>>

同步練習(xí)冊(cè)答案