分析 (1)根據(jù)等腰三角形AG⊥EF.推證 AG⊥AD,AG⊥平面ABCD,線面的轉(zhuǎn)化 AG⊥CD.
(2)根據(jù)中點(diǎn)推證GF∥MN,GF=MN.四邊形GFNM是平行四邊形. 由直線平面平行的判定定理推證GM∥平面ABF;
解答 解:(1)證明:因?yàn)锳E=AF,點(diǎn)G是EF的中點(diǎn),
所以 AG⊥EF.
又因?yàn)?nbsp;EF∥AD,
所以 AG⊥AD.
因?yàn)槠矫鍭DEF⊥平面ABCD,且平面ADEF∩平面ABCD=AD,AG?平面ADEF,
所以 AG⊥平面ABCD.
因?yàn)?nbsp;CD?平面ABCD,
所以 AG⊥CD.
(2)存在點(diǎn)M在線段AC上,且 $\frac{AM}{MC}$=$\frac{1}{3}$,使得:GM∥平面ABF.
證明:如圖,過點(diǎn)M作MN∥BC,且交AB于點(diǎn)N,連結(jié)NF,
因?yàn)?nbsp;$\frac{AM}{MC}$=$\frac{1}{3}$,所以$\frac{MN}{BC}$=$\frac{AM}{AC}$=$\frac{1}{4}$,
因?yàn)?nbsp;BC=2EF,點(diǎn)G是EF的中點(diǎn),
所以 BC=4GF,
又因?yàn)?nbsp;EF∥AD,四邊形ABCD為正方形,
所以 GF∥MN,GF=MN.
所以四邊形GFNM是平行四邊形.
所以 GM∥FN.
又因?yàn)镚M?平面ABF,F(xiàn)N?平面ABF,
所以 GM∥平面ABF.
點(diǎn)評 本題考查了空間幾何體的性質(zhì),空間直線的位置關(guān)系,直線平面的平行關(guān)系,掌握好定理,轉(zhuǎn)化直線的為關(guān)系判斷即可,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com