精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)= sin2x﹣cos2x+1,下列結論中錯誤的是(
A.f(x)的圖象關于( ,1)中心對稱
B.f(x)在( , )上單調遞減
C.f(x)的圖象關于x= 對稱
D.f(x)的最大值為3

【答案】B
【解析】解:f(x)= sin2x﹣cos2x+1=2sin(2x﹣ )+1,

A.當x= 時,sin(2x﹣ )=0,則f(x)的圖象關于( ,1)中心對稱,故A正確,

B.由2kπ+ ≤2x﹣ ≤2kπ+ ,k∈Z,得kπ+ ≤x≤kπ+ ,k∈Z,

當k=0時,函數的遞減區(qū)間是[ , ],故B錯誤,

C.當x= 時,2x﹣ =2× = ,則f(x)的圖象關于x= 對稱,故C正確,

D.當2sin(2x﹣ )=1時,函數取得最大值為2+1=3,故D正確,

故選:B

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】己知直線l1:4x﹣3y+6=0和直線l2:x=﹣1,拋物線y2=4x上一動點P到直線l1和直線l2的距離之和的最小值是( )
A.2
B.3
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知△ABC中,BC邊上的高所在的直線方程為x﹣2y+1=0,∠A的平分線所在直線的方程為y=0.

(1)求點A的坐標;
(2)若點B的坐標為(1,2),求點C的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某創(chuàng)業(yè)投資公司擬開發(fā)某種新能源產品,估計能獲得萬元到萬元的投資利益,現準備制定一個對科研課題組的獎勵方案:獎金(單位:萬元)隨投資收益(單位:萬元)的增加而增加,且獎金不超過萬元,同時獎金不超過收益的

)請分析函數是否符合公司要求的獎勵函數模型,并說明原因.

)若該公司采用函數模型作為獎勵函數模型,試確定最小正整數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)= ﹣k ln x,k>0.
(1)求f(x)的單調區(qū)間和極值;
(2)證明:若f(x)存在零點,則f(x)在區(qū)間(1, ]上僅有一個零點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】現有同一型號的電腦96,為了了解這種電腦每開機一次所產生的輻射情況,從中抽取10臺在同一條件下做開機實驗,測量開機一次所產生的輻射,得到如下數據:

13.7 12.9 14.4 13.8 13.3

12.7 13.5 13.6 13.1 13.4

(1)寫出采用簡單隨機抽樣抽取上述樣本的過程;

(2)根據樣本,請估計總體平均數與總體標準差的情況.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的焦距為,且過點.

(1)求橢圓的方程;

(2)若不經過點的直線交于兩點,且直線與直線的斜率之和為,證明:直線的斜率為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】據IEC(國際電工委員會)調查顯示,小型風力發(fā)電項目投資較少,且開發(fā)前景廣闊,但受風力自然資源影響,項目投資存在一定風險.根據測算,風能風區(qū)分類標準如下:

風能分類

一類風區(qū)

二類風區(qū)

平均風速m/s

8.5~10

6.5~8.5

假設投資A項目的資金為x(x≥0)萬元,投資B項目資金為y(y≥0)萬元,調研結果是:未來一年內,位于一類風區(qū)的A項目獲利30%的可能性為0.6,虧損20%的可能性為0.4;位于二類風區(qū)的B項目獲利35%的可能性為0.6,虧損10%的可能性是0.1,不賠不賺的可能性是0.3.
(1)記投資A,B項目的利潤分別為ξ和η,試寫出隨機變量ξ與η的分布列和期望Eξ,Eη;
(2)某公司計劃用不超過100萬元的資金投資于A,B項目,且公司要求對A項目的投資不得低于B項目,根據(1)的條件和市場調研,試估計一年后兩個項目的平均利潤之和z=Eξ+Eη的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)=2sin(3x+φ)的圖象向右平移動 個單位,得到的圖象關于y軸對稱,則|φ|的最小值為(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案