【題目】已知: ; :直線與拋物線有公共點.如果為真命題,為假命題,求實數(shù)的取值范圍.
【答案】
【解析】
試題分析:結(jié)合二次函數(shù)性質(zhì)可求得p為真命題時的a的取值范圍,由直線與拋物線相交的位置關(guān)系可求得命題q為真命題時的a的范圍,由為真命題,為假命題可知兩命題一真一假,分兩種情況討論可求得a的取值范圍
試題解析:為真…………………………………………3分
為真直線與拋物線有公共點
由消去,并整理得
(★)……………………………………4分
(1)若,則方程(★)變?yōu)?/span>解得.
這時直線與拋物線有公共點.
所以,使得直線與拋物線有公共點.……………5分
(2)若,則
由直線與拋物線有公共點
得方程(★)的判別式,
即.解得.
又,所以,或………………………………………7分
綜上,若為真,則.…………………………………………………8分
如果為真命題,為假命題,則一真一假.………………………9分
當真假時,則或,且,所以;…………10分
當假真時,或,且,所以.…………………11分
綜上,實數(shù)的取值范圍為………………………………………12分[來
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在多面體中,平面,,且為等邊三角形,,與平面所成角的正弦值為.
(1)若是線段的中點,證明:平面;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)的單調(diào)遞減區(qū)間;
(2)當時,設(shè)函數(shù).若函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在三棱錐A-BOC中,OA⊥底面BOC,∠OAB=∠OAC=30°,AB=AC=4,BC=,動點D在線段AB上.
(1)求證:平面COD⊥平面AOB;
(2)當OD⊥AB時,求三棱錐C-OBD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以邊長為4的等比三角形的頂點以及邊的中點為左、右焦點的橢圓過兩點.
(1)求該橢圓的標準方程;
(2)過點且軸不垂直的直線交橢圓于兩點,求證直線與的交點在一條直線上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值點;
(2)若函數(shù)在區(qū)間[2,6]內(nèi)有極值,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com