分析 (1)通過整理原方程即為(x2+kx+2)+(2x+k)i=0,其有實(shí)根只需$\left\{\begin{array}{l}{{x}^{2}+kx+2=0}\\{2x+k=0}\end{array}\right.$,計(jì)算即可;
(2)通過將改方程的根代入原方程,計(jì)算即可.
解答 解:(1)∵x2+(k+2i)x+2+ki=0有實(shí)根,
∴(x2+kx+2)+(2x+k)i=0有實(shí)根,
∴$\left\{\begin{array}{l}{{x}^{2}+kx+2=0}\\{2x+k=0}\end{array}\right.$,
消去x可得:$\frac{{k}^{2}}{4}-\frac{{k}^{2}}{2}+2=0$,
∴k=±2$\sqrt{2}$,
∴x=-$\frac{k}{2}$=±$\sqrt{2}$;
(2)∵x2+(k+2i)x+2+ki=0有一根$\frac{1}{i}$-1,
∴($\frac{1}{i}$-1)2+(k+2i)($\frac{1}{i}$-1)+2+ki=0,
整理得:4-k-2i=0,
∴k=4-2i.
點(diǎn)評(píng) 本題考查復(fù)數(shù)方程相關(guān)問題,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 18 | B. | $\frac{1}{4}$ | C. | 16 | D. | $\frac{65}{4}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com